Merge-Mixtral-Prometheus-8x7B
Merge-Mixtral-Prometheus-8x7B is a merge of the following models using LazyMergekit:
🧩 Configuration
models:
- model: prometheus-eval/prometheus-8x7b-v2.0
parameters:
weight: 1.0
- model: mistralai/Mixtral-8x7B-Instruct-v0.1
parameters:
weight: 1.0
merge_method: linear
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "vicgalle/test-merge-3"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Paper citation
Paper: https://arxiv.org/abs/2406.07188
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 24.61 |
IFEval (0-Shot) | 57.44 |
BBH (3-Shot) | 34.65 |
MATH Lvl 5 (4-Shot) | 8.31 |
GPQA (0-shot) | 7.83 |
MuSR (0-shot) | 9.59 |
MMLU-PRO (5-shot) | 29.82 |
- Downloads last month
- 28
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for vicgalle/Merge-Mixtral-Prometheus-8x7B
Merge model
this model
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard57.440
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard34.650
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard8.310
- acc_norm on GPQA (0-shot)Open LLM Leaderboard7.830
- acc_norm on MuSR (0-shot)Open LLM Leaderboard9.590
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard29.820