metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: canine-c-finetuned-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8627450980392157
- name: F1
type: f1
value: 0.9014084507042254
canine-c-finetuned-mrpc
This model is a fine-tuned version of google/canine-c on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.4066
- Accuracy: 0.8627
- F1: 0.9014
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 230 | 0.5014 | 0.7696 | 0.8479 |
No log | 2.0 | 460 | 0.4755 | 0.7892 | 0.8622 |
0.5096 | 3.0 | 690 | 0.3645 | 0.8431 | 0.8869 |
0.5096 | 4.0 | 920 | 0.4066 | 0.8627 | 0.9014 |
0.2619 | 5.0 | 1150 | 0.4551 | 0.8431 | 0.8877 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6