Edit model card

layoutlmv3-finetuned-cord_vimal

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8321
  • Precision: 0.7179
  • Recall: 0.7368
  • F1: 0.7273
  • Accuracy: 0.7333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 125.0 250 1.2027 0.7564 0.7763 0.7662 0.7481
0.8449 250.0 500 1.3990 0.7089 0.7368 0.7226 0.7333
0.8449 375.0 750 1.5343 0.7179 0.7368 0.7273 0.7333
0.0296 500.0 1000 1.6144 0.75 0.75 0.75 0.7407
0.0296 625.0 1250 1.6898 0.7179 0.7368 0.7273 0.7333
0.0134 750.0 1500 1.7402 0.7179 0.7368 0.7273 0.7333
0.0134 875.0 1750 1.7888 0.7179 0.7368 0.7273 0.7333
0.0089 1000.0 2000 1.8041 0.7179 0.7368 0.7273 0.7333
0.0089 1125.0 2250 1.8209 0.7179 0.7368 0.7273 0.7333
0.0073 1250.0 2500 1.8321 0.7179 0.7368 0.7273 0.7333

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results