convnextv2-tiny-1k-224-finetuned-pattern-rgb
This model is a fine-tuned version of facebook/convnextv2-tiny-1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5797
- Accuracy: 0.875
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 120
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.6954 | 0.9912 | 28 | 1.4482 | 0.58 |
1.015 | 1.9823 | 56 | 0.9088 | 0.7175 |
0.7953 | 2.9735 | 84 | 0.7266 | 0.7625 |
0.627 | 4.0 | 113 | 0.5872 | 0.8 |
0.4684 | 4.9912 | 141 | 0.5534 | 0.8175 |
0.4301 | 5.9823 | 169 | 0.5053 | 0.8275 |
0.3716 | 6.9735 | 197 | 0.4885 | 0.83 |
0.3798 | 8.0 | 226 | 0.4639 | 0.8525 |
0.3123 | 8.9912 | 254 | 0.5282 | 0.825 |
0.3148 | 9.9823 | 282 | 0.4569 | 0.8475 |
0.2427 | 10.9735 | 310 | 0.4206 | 0.865 |
0.2198 | 12.0 | 339 | 0.4832 | 0.84 |
0.1995 | 12.9912 | 367 | 0.4468 | 0.865 |
0.1738 | 13.9823 | 395 | 0.5668 | 0.8425 |
0.1683 | 14.9735 | 423 | 0.4454 | 0.8725 |
0.1426 | 16.0 | 452 | 0.5118 | 0.8525 |
0.133 | 16.9912 | 480 | 0.4713 | 0.865 |
0.1148 | 17.9823 | 508 | 0.5226 | 0.855 |
0.1147 | 18.9735 | 536 | 0.5333 | 0.8425 |
0.1284 | 20.0 | 565 | 0.4399 | 0.8575 |
0.1035 | 20.9912 | 593 | 0.5194 | 0.8525 |
0.1054 | 21.9823 | 621 | 0.5140 | 0.845 |
0.1056 | 22.9735 | 649 | 0.5183 | 0.87 |
0.1224 | 24.0 | 678 | 0.5293 | 0.85 |
0.0956 | 24.9912 | 706 | 0.4985 | 0.87 |
0.0717 | 25.9823 | 734 | 0.5267 | 0.8625 |
0.0858 | 26.9735 | 762 | 0.5525 | 0.8575 |
0.097 | 28.0 | 791 | 0.5340 | 0.855 |
0.0914 | 28.9912 | 819 | 0.4830 | 0.87 |
0.0699 | 29.9823 | 847 | 0.4883 | 0.8725 |
0.0932 | 30.9735 | 875 | 0.6106 | 0.8575 |
0.0967 | 32.0 | 904 | 0.5614 | 0.855 |
0.101 | 32.9912 | 932 | 0.5947 | 0.8525 |
0.0734 | 33.9823 | 960 | 0.5388 | 0.87 |
0.0742 | 34.9735 | 988 | 0.5110 | 0.8725 |
0.0698 | 36.0 | 1017 | 0.5384 | 0.8525 |
0.0785 | 36.9912 | 1045 | 0.5407 | 0.8475 |
0.0718 | 37.9823 | 1073 | 0.5420 | 0.86 |
0.061 | 38.9735 | 1101 | 0.5747 | 0.8675 |
0.0695 | 40.0 | 1130 | 0.5829 | 0.8575 |
0.0611 | 40.9912 | 1158 | 0.6212 | 0.8525 |
0.0734 | 41.9823 | 1186 | 0.5035 | 0.875 |
0.0643 | 42.9735 | 1214 | 0.5345 | 0.8775 |
0.0625 | 44.0 | 1243 | 0.5208 | 0.8625 |
0.047 | 44.9912 | 1271 | 0.5635 | 0.8675 |
0.0612 | 45.9823 | 1299 | 0.4721 | 0.8775 |
0.0582 | 46.9735 | 1327 | 0.5683 | 0.855 |
0.0516 | 48.0 | 1356 | 0.5883 | 0.8625 |
0.0427 | 48.9912 | 1384 | 0.5757 | 0.8575 |
0.0601 | 49.9823 | 1412 | 0.5368 | 0.8625 |
0.0645 | 50.9735 | 1440 | 0.5608 | 0.84 |
0.054 | 52.0 | 1469 | 0.5380 | 0.87 |
0.0647 | 52.9912 | 1497 | 0.5490 | 0.8625 |
0.0539 | 53.9823 | 1525 | 0.5686 | 0.8625 |
0.0485 | 54.9735 | 1553 | 0.5474 | 0.8725 |
0.0649 | 56.0 | 1582 | 0.5938 | 0.86 |
0.0486 | 56.9912 | 1610 | 0.5642 | 0.86 |
0.0385 | 57.9823 | 1638 | 0.5390 | 0.8675 |
0.0404 | 58.9735 | 1666 | 0.5735 | 0.8775 |
0.0543 | 60.0 | 1695 | 0.5117 | 0.875 |
0.0506 | 60.9912 | 1723 | 0.5422 | 0.8725 |
0.0398 | 61.9823 | 1751 | 0.5473 | 0.87 |
0.0494 | 62.9735 | 1779 | 0.5333 | 0.8675 |
0.0472 | 64.0 | 1808 | 0.5650 | 0.8825 |
0.0504 | 64.9912 | 1836 | 0.5771 | 0.8575 |
0.044 | 65.9823 | 1864 | 0.5220 | 0.86 |
0.061 | 66.9735 | 1892 | 0.5622 | 0.8725 |
0.0459 | 68.0 | 1921 | 0.5864 | 0.8625 |
0.0294 | 68.9912 | 1949 | 0.6341 | 0.8625 |
0.0428 | 69.9823 | 1977 | 0.5696 | 0.8675 |
0.0317 | 70.9735 | 2005 | 0.6313 | 0.845 |
0.0453 | 72.0 | 2034 | 0.5955 | 0.875 |
0.0592 | 72.9912 | 2062 | 0.5844 | 0.8675 |
0.0408 | 73.9823 | 2090 | 0.5868 | 0.86 |
0.0358 | 74.9735 | 2118 | 0.6115 | 0.85 |
0.0412 | 76.0 | 2147 | 0.5940 | 0.865 |
0.0323 | 76.9912 | 2175 | 0.5752 | 0.8625 |
0.0378 | 77.9823 | 2203 | 0.5515 | 0.8725 |
0.0359 | 78.9735 | 2231 | 0.5910 | 0.8775 |
0.028 | 80.0 | 2260 | 0.6060 | 0.8725 |
0.032 | 80.9912 | 2288 | 0.6054 | 0.8775 |
0.032 | 81.9823 | 2316 | 0.6312 | 0.8725 |
0.0228 | 82.9735 | 2344 | 0.6153 | 0.87 |
0.0457 | 84.0 | 2373 | 0.6443 | 0.86 |
0.0248 | 84.9912 | 2401 | 0.5726 | 0.875 |
0.0405 | 85.9823 | 2429 | 0.6042 | 0.875 |
0.0203 | 86.9735 | 2457 | 0.6107 | 0.87 |
0.0557 | 88.0 | 2486 | 0.5890 | 0.88 |
0.0302 | 88.9912 | 2514 | 0.5778 | 0.8625 |
0.0268 | 89.9823 | 2542 | 0.6039 | 0.8625 |
0.0313 | 90.9735 | 2570 | 0.5608 | 0.885 |
0.0227 | 92.0 | 2599 | 0.6019 | 0.8625 |
0.0277 | 92.9912 | 2627 | 0.5949 | 0.8675 |
0.0378 | 93.9823 | 2655 | 0.5785 | 0.875 |
0.0381 | 94.9735 | 2683 | 0.5646 | 0.8825 |
0.0435 | 96.0 | 2712 | 0.5513 | 0.88 |
0.0264 | 96.9912 | 2740 | 0.5257 | 0.875 |
0.0362 | 97.9823 | 2768 | 0.5332 | 0.8825 |
0.0209 | 98.9735 | 2796 | 0.5777 | 0.855 |
0.0348 | 100.0 | 2825 | 0.5674 | 0.8675 |
0.02 | 100.9912 | 2853 | 0.5744 | 0.8625 |
0.0092 | 101.9823 | 2881 | 0.5852 | 0.8675 |
0.0343 | 102.9735 | 2909 | 0.5856 | 0.8675 |
0.0185 | 104.0 | 2938 | 0.5670 | 0.88 |
0.0198 | 104.9912 | 2966 | 0.5612 | 0.8775 |
0.016 | 105.9823 | 2994 | 0.5701 | 0.88 |
0.0369 | 106.9735 | 3022 | 0.5791 | 0.8825 |
0.0357 | 108.0 | 3051 | 0.5730 | 0.8725 |
0.0361 | 108.9912 | 3079 | 0.5627 | 0.8725 |
0.0438 | 109.9823 | 3107 | 0.5812 | 0.875 |
0.0243 | 110.9735 | 3135 | 0.5922 | 0.8725 |
0.0241 | 112.0 | 3164 | 0.5913 | 0.8775 |
0.0256 | 112.9912 | 3192 | 0.5862 | 0.8675 |
0.0247 | 113.9823 | 3220 | 0.5813 | 0.8675 |
0.028 | 114.9735 | 3248 | 0.5752 | 0.87 |
0.0177 | 116.0 | 3277 | 0.5742 | 0.87 |
0.0255 | 116.9912 | 3305 | 0.5795 | 0.87 |
0.0174 | 117.9823 | 3333 | 0.5803 | 0.875 |
0.0225 | 118.9381 | 3360 | 0.5797 | 0.875 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for vishalkatheriya18/convnextv2-tiny-1k-224-finetuned-pattern-rgb
Base model
facebook/convnextv2-tiny-1k-224