vishalkatheriya18's picture
End of training
b813155 verified
metadata
license: apache-2.0
base_model: facebook/convnextv2-tiny-1k-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: convnextv2-tiny-1k-224-finetuned-sleeve-length
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8620689655172413

convnextv2-tiny-1k-224-finetuned-sleeve-length

This model is a fine-tuned version of facebook/convnextv2-tiny-1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5496
  • Accuracy: 0.8621

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.96 6 1.7957 0.2299
1.8656 1.92 12 1.7704 0.2759
1.8656 2.88 18 1.7382 0.3218
1.7835 4.0 25 1.6674 0.3793
1.664 4.96 31 1.5982 0.4253
1.664 5.92 37 1.4861 0.4368
1.5072 6.88 43 1.3645 0.4713
1.3304 8.0 50 1.2859 0.4598
1.3304 8.96 56 1.2796 0.4713
1.1651 9.92 62 1.2456 0.5172
1.1651 10.88 68 1.1667 0.5402
1.0876 12.0 75 1.1510 0.5632
1.0046 12.96 81 1.0510 0.6092
1.0046 13.92 87 1.0338 0.5862
0.9465 14.88 93 0.9883 0.5862
0.8699 16.0 100 0.9882 0.5632
0.8699 16.96 106 0.9276 0.5747
0.7969 17.92 112 0.9145 0.5862
0.7969 18.88 118 0.8144 0.6667
0.7254 20.0 125 0.7587 0.6667
0.6447 20.96 131 0.6990 0.7471
0.6447 21.92 137 0.7042 0.7241
0.6021 22.88 143 0.6526 0.7701
0.516 24.0 150 0.6485 0.8046
0.516 24.96 156 0.5803 0.8161
0.4497 25.92 162 0.6085 0.8046
0.4497 26.88 168 0.6095 0.8046
0.3935 28.0 175 0.5372 0.8276
0.3321 28.96 181 0.5829 0.8161
0.3321 29.92 187 0.6205 0.8161
0.3007 30.88 193 0.5150 0.8276
0.2618 32.0 200 0.6069 0.8391
0.2618 32.96 206 0.5273 0.8391
0.2411 33.92 212 0.4727 0.8621
0.2411 34.88 218 0.4611 0.8736
0.2108 36.0 225 0.5696 0.8506
0.2143 36.96 231 0.4944 0.8621
0.2143 37.92 237 0.5628 0.8161
0.1663 38.88 243 0.6131 0.8046
0.1714 40.0 250 0.4962 0.8506
0.1714 40.96 256 0.5023 0.8391
0.174 41.92 262 0.4842 0.8276
0.174 42.88 268 0.4679 0.8276
0.138 44.0 275 0.6271 0.8161
0.1437 44.96 281 0.5326 0.8506
0.1437 45.92 287 0.5655 0.8161
0.136 46.88 293 0.4672 0.8391
0.1401 48.0 300 0.4990 0.8621
0.1401 48.96 306 0.5445 0.8276
0.1281 49.92 312 0.4761 0.8736
0.1281 50.88 318 0.5665 0.8506
0.1156 52.0 325 0.5090 0.8506
0.0981 52.96 331 0.5152 0.8506
0.0981 53.92 337 0.5466 0.8161
0.1055 54.88 343 0.5390 0.8276
0.112 56.0 350 0.5574 0.8506
0.112 56.96 356 0.5449 0.8506
0.0855 57.92 362 0.5390 0.8506
0.0855 58.88 368 0.5206 0.8506
0.0899 60.0 375 0.5476 0.8621
0.1026 60.96 381 0.5344 0.8506
0.1026 61.92 387 0.5531 0.8391
0.0799 62.88 393 0.5723 0.8276
0.0844 64.0 400 0.5340 0.8161
0.0844 64.96 406 0.5236 0.8736
0.0724 65.92 412 0.6137 0.8391
0.0724 66.88 418 0.5825 0.8276
0.0867 68.0 425 0.5105 0.8621
0.071 68.96 431 0.5272 0.8506
0.071 69.92 437 0.5524 0.8506
0.0723 70.88 443 0.5508 0.8391
0.0748 72.0 450 0.5689 0.8161
0.0748 72.96 456 0.5556 0.8506
0.0589 73.92 462 0.5452 0.8506
0.0589 74.88 468 0.5475 0.8621
0.0719 76.0 475 0.5484 0.8621
0.0801 76.8 480 0.5496 0.8621

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1