vonewman's picture
Training completed!
58e0e64
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- masakhaner2
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-wol
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: masakhaner2
type: masakhaner2
config: wol
split: validation
args: wol
metrics:
- name: F1
type: f1
value: 0.7818981772470145
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-wol
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the masakhaner2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0734
- F1: 0.7819
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 96 | 0.1055 | 0.6577 |
| 0.1995 | 2.0 | 192 | 0.0785 | 0.7488 |
| 0.1995 | 3.0 | 288 | 0.0734 | 0.7819 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3