base_model: Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct | |
datasets: | |
- LDJnr/Capybara | |
- jondurbin/airoboros-3.2 | |
- unalignment/toxic-dpo-v0.1 | |
- LDJnr/Verified-Camel | |
- HuggingFaceH4/no_robots | |
- Doctor-Shotgun/no-robots-sharegpt | |
- Doctor-Shotgun/capybara-sharegpt | |
language: | |
- en | |
library_name: transformers | |
pipeline_tag: text-generation | |
tags: | |
- llama | |
- mlx | |
inference: false | |
# vrglx33/TinyLlama-1.1B-32k-Instruct-mlx | |
The Model [vrglx33/TinyLlama-1.1B-32k-Instruct-mlx](https://huggingface.co/vrglx33/TinyLlama-1.1B-32k-Instruct-mlx) was converted to MLX format from [Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct](https://huggingface.co/Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct) using mlx-lm version **0.19.3**. | |
## Use with mlx | |
```bash | |
pip install mlx-lm | |
``` | |
```python | |
from mlx_lm import load, generate | |
model, tokenizer = load("vrglx33/TinyLlama-1.1B-32k-Instruct-mlx") | |
prompt="hello" | |
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: | |
messages = [{"role": "user", "content": prompt}] | |
prompt = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
response = generate(model, tokenizer, prompt=prompt, verbose=True) | |
``` | |