|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-base-22k-384 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: convnext-base-15ep |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9431411530815109 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# convnext-base-15ep |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3192 |
|
- Accuracy: 0.9431 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.5717 | 1.0 | 1099 | 0.4616 | 0.8573 | |
|
| 0.4653 | 2.0 | 2198 | 0.3607 | 0.8970 | |
|
| 0.3449 | 3.0 | 3297 | 0.4104 | 0.8950 | |
|
| 0.3522 | 4.0 | 4396 | 0.3755 | 0.9026 | |
|
| 0.28 | 5.0 | 5495 | 0.3756 | 0.9066 | |
|
| 0.2456 | 6.0 | 6594 | 0.3496 | 0.9173 | |
|
| 0.2141 | 7.0 | 7693 | 0.3612 | 0.9201 | |
|
| 0.1458 | 8.0 | 8792 | 0.3391 | 0.9304 | |
|
| 0.1842 | 9.0 | 9891 | 0.3353 | 0.9328 | |
|
| 0.1037 | 10.0 | 10990 | 0.3383 | 0.9356 | |
|
| 0.0747 | 11.0 | 12089 | 0.3345 | 0.9368 | |
|
| 0.0912 | 12.0 | 13188 | 0.3244 | 0.9392 | |
|
| 0.0733 | 13.0 | 14287 | 0.3219 | 0.9408 | |
|
| 0.0667 | 14.0 | 15386 | 0.3190 | 0.9435 | |
|
| 0.0694 | 15.0 | 16485 | 0.3192 | 0.9431 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|