Edit model card

Llama 3.1-8B Instruct African-Ultrachat Quantize

  • Developed by: vutuka
  • License: apache-2.0
  • Finetuned from model : meta-llama/meta-llama-3.1-8b-instruct
  • Max Content Length : 8192
  • Max Steps : 800
  • Training Time : 02h-22min-08s
  • Setup :
    • 1 x RTX A6000
    • 16 vCPU
    • 58 GB RAM
    • 150 GB Storage

Tokenizer & Chat Format

from unsloth.chat_templates import get_chat_template

tokenizer = get_chat_template(
    tokenizer,
    chat_template = "llama-3", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
    mapping={
        "role": "role",
        "content": "content",
        "user": "",
        "assistant": "",
    }
)

def formatting_prompts_func(examples):
    convos = examples["messages"]
    texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]
    return { "text" : texts, }
pass

Trainer

trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset = shuffled_dataset,
    dataset_text_field = "text",
    max_seq_length = max_seq_length,
    dataset_num_proc = 2,
    packing = False, # Can make training 5x faster for short sequences.
    args = TrainingArguments(
        per_device_train_batch_size = 2,
        gradient_accumulation_steps = 4,
        warmup_steps = 5,
        max_steps = 800,
        do_eval=True,
        learning_rate = 3e-4,
        log_level="debug",
        #fp16 = not is_bfloat16_supported(),
        bf16 = True,
        logging_steps = 10,
        optim = "adamw_8bit",
        weight_decay = 0.01,
        lr_scheduler_type = "linear",
        seed = 3407,
        output_dir = "outputs",
        report_to='wandb',
        warmup_ratio=0.3,
    ),
)

Inference with Llama CPP

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month
153
GGUF
Model size
8.03B params
Architecture
llama

4-bit

5-bit

8-bit

16-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for vutuka/Llama-3.1-8B-Instruct-African-Ultrachat-GGUF

Quantized
(249)
this model