w11wo's picture
Update metadata with huggingface_hub
e713b62
|
raw
history blame
2.36 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
base_model: microsoft/deberta-v3-base
model-index:
  - name: deberta-v3-base-isarcasm
    results:
      - task:
          type: text-classification
        dataset:
          name: iSarcasm
          type: isarcasm
          split: test
        metrics:
          - type: f1
            value: 0.47887323943661975
            name: f1
          - type: accuracy
            value: 0.8331454340473506
            name: accuracy
          - type: recall
            value: 0.43312101910828027
            name: recall
          - type: precision
            value: 0.5354330708661418
            name: precision

deberta-v3-base-isarcasm

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3693
  • Accuracy: 0.8331
  • F1: 0.4789
  • Precision: 0.5354
  • Recall: 0.4331

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 215 0.7833 0.8 0.0 0.0 0.0
No log 2.0 430 1.1913 0.8 0.0 0.0 0.0
0.577 3.0 645 1.5866 0.7714 0.2 0.25 0.1667
0.577 4.0 860 2.3199 0.8 0.2222 0.3333 0.1667
0.2047 5.0 1075 2.4911 0.8 0.2222 0.3333 0.1667

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3