Edit model card

indonesian-roberta-base-nerp-tagger

This model is a fine-tuned version of flax-community/indonesian-roberta-base on the indonlu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1180
  • Precision: 0.8102
  • Recall: 0.8107
  • F1: 0.8105
  • Accuracy: 0.9615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 420 0.1419 0.7491 0.8034 0.7753 0.9551
0.2261 2.0 840 0.1317 0.7889 0.7983 0.7936 0.9569
0.1081 3.0 1260 0.1430 0.7587 0.8300 0.7927 0.9546
0.0777 4.0 1680 0.1459 0.7848 0.8266 0.8052 0.9577
0.0563 5.0 2100 0.1525 0.7923 0.8125 0.8022 0.9579
0.0441 6.0 2520 0.1552 0.7986 0.8176 0.8080 0.9584
0.0441 7.0 2940 0.1692 0.7910 0.8232 0.8068 0.9584
0.0387 8.0 3360 0.1677 0.7894 0.8306 0.8095 0.9588
0.032 9.0 3780 0.1784 0.7939 0.8249 0.8091 0.9586
0.0284 10.0 4200 0.1817 0.7950 0.8261 0.8102 0.9588

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
24
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for w11wo/indonesian-roberta-base-nerp-tagger

Finetuned
(3)
this model

Dataset used to train w11wo/indonesian-roberta-base-nerp-tagger

Space using w11wo/indonesian-roberta-base-nerp-tagger 1

Collection including w11wo/indonesian-roberta-base-nerp-tagger

Evaluation results