|
--- |
|
license: mit |
|
base_model: xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: xlm-roberta-base-reddit-indonesia-sarcastic |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-base-reddit-indonesia-sarcastic |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6826 |
|
- Accuracy: 0.8044 |
|
- F1: 0.5818 |
|
- Precision: 0.6254 |
|
- Recall: 0.5439 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 100.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.5174 | 1.0 | 309 | 0.4618 | 0.7725 | 0.4641 | 0.5650 | 0.3938 | |
|
| 0.4462 | 2.0 | 618 | 0.4407 | 0.7994 | 0.5428 | 0.6316 | 0.4759 | |
|
| 0.3952 | 3.0 | 927 | 0.4690 | 0.8037 | 0.4991 | 0.69 | 0.3909 | |
|
| 0.3525 | 4.0 | 1236 | 0.4905 | 0.8079 | 0.5152 | 0.6990 | 0.4079 | |
|
| 0.3102 | 5.0 | 1545 | 0.4741 | 0.8122 | 0.5917 | 0.6486 | 0.5439 | |
|
| 0.2645 | 6.0 | 1854 | 0.4964 | 0.8101 | 0.5976 | 0.6358 | 0.5637 | |
|
| 0.2168 | 7.0 | 2163 | 0.5216 | 0.8079 | 0.5824 | 0.6385 | 0.5354 | |
|
| 0.1759 | 8.0 | 2472 | 0.6826 | 0.8044 | 0.5818 | 0.6254 | 0.5439 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|