b1ade-embed-kd / README.md
w601sxs's picture
updating readme
8a75dfc verified
metadata
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
  - mteb
model-index:
  - name: b1ade_embed_kd
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification
          config: default
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 75.81709145427287
          - type: ap
            value: 23.581082591688467
          - type: f1
            value: 62.54637626017967
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 80.300125
          - type: ap
            value: 74.26836190039964
          - type: f1
            value: 80.2158066692679
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification
          config: default
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 43.084
          - type: f1
            value: 42.66774553366831
      - task:
          type: Retrieval
        dataset:
          type: mteb/arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
        metrics:
          - type: map_at_1
            value: 29.232000000000003
          - type: map_at_10
            value: 45.777
          - type: map_at_100
            value: 46.634
          - type: map_at_1000
            value: 46.64
          - type: map_at_20
            value: 46.489000000000004
          - type: map_at_3
            value: 40.861
          - type: map_at_5
            value: 43.659
          - type: mrr_at_1
            value: 30.156
          - type: mrr_at_10
            value: 46.141
          - type: mrr_at_100
            value: 46.983999999999995
          - type: mrr_at_1000
            value: 46.989999999999995
          - type: mrr_at_20
            value: 46.839
          - type: mrr_at_3
            value: 41.157
          - type: mrr_at_5
            value: 44.013000000000005
          - type: ndcg_at_1
            value: 29.232000000000003
          - type: ndcg_at_10
            value: 54.832
          - type: ndcg_at_100
            value: 58.303000000000004
          - type: ndcg_at_1000
            value: 58.451
          - type: ndcg_at_20
            value: 57.328
          - type: ndcg_at_3
            value: 44.685
          - type: ndcg_at_5
            value: 49.756
          - type: precision_at_1
            value: 29.232000000000003
          - type: precision_at_10
            value: 8.371
          - type: precision_at_100
            value: 0.985
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_20
            value: 4.6690000000000005
          - type: precision_at_3
            value: 18.587
          - type: precision_at_5
            value: 13.627
          - type: recall_at_1
            value: 29.232000000000003
          - type: recall_at_10
            value: 83.71300000000001
          - type: recall_at_100
            value: 98.506
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_20
            value: 93.38499999999999
          - type: recall_at_3
            value: 55.761
          - type: recall_at_5
            value: 68.137
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 45.801946024895756
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 37.639210206045206
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 57.589359041891576
          - type: mrr
            value: 70.88334872268389
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 86.63594177060354
          - type: cos_sim_spearman
            value: 84.75132870687939
          - type: euclidean_pearson
            value: 85.05646621990854
          - type: euclidean_spearman
            value: 84.68686940680522
          - type: manhattan_pearson
            value: 85.08705700579426
          - type: manhattan_spearman
            value: 84.83446313127413
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 85.1948051948052
          - type: f1
            value: 85.13229898343104
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 38.68616898014911
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 34.45376891835619
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-android
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: f46a197baaae43b4f621051089b82a364682dfeb
        metrics:
          - type: map_at_1
            value: 26.340000000000003
          - type: map_at_10
            value: 36.513
          - type: map_at_100
            value: 37.968
          - type: map_at_1000
            value: 38.107
          - type: map_at_20
            value: 37.355
          - type: map_at_3
            value: 33.153
          - type: map_at_5
            value: 34.899
          - type: mrr_at_1
            value: 33.763
          - type: mrr_at_10
            value: 42.778
          - type: mrr_at_100
            value: 43.667
          - type: mrr_at_1000
            value: 43.724000000000004
          - type: mrr_at_20
            value: 43.349
          - type: mrr_at_3
            value: 40.32
          - type: mrr_at_5
            value: 41.657
          - type: ndcg_at_1
            value: 33.763
          - type: ndcg_at_10
            value: 42.783
          - type: ndcg_at_100
            value: 48.209999999999994
          - type: ndcg_at_1000
            value: 50.678999999999995
          - type: ndcg_at_20
            value: 45.073
          - type: ndcg_at_3
            value: 37.841
          - type: ndcg_at_5
            value: 39.818999999999996
          - type: precision_at_1
            value: 33.763
          - type: precision_at_10
            value: 8.398
          - type: precision_at_100
            value: 1.396
          - type: precision_at_1000
            value: 0.188
          - type: precision_at_20
            value: 5.0569999999999995
          - type: precision_at_3
            value: 18.503
          - type: precision_at_5
            value: 13.219
          - type: recall_at_1
            value: 26.340000000000003
          - type: recall_at_10
            value: 54.603
          - type: recall_at_100
            value: 77.264
          - type: recall_at_1000
            value: 93.882
          - type: recall_at_20
            value: 63.101
          - type: recall_at_3
            value: 39.6
          - type: recall_at_5
            value: 45.651
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-english
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
        metrics:
          - type: map_at_1
            value: 24.313000000000002
          - type: map_at_10
            value: 33.225
          - type: map_at_100
            value: 34.293
          - type: map_at_1000
            value: 34.421
          - type: map_at_20
            value: 33.818
          - type: map_at_3
            value: 30.545
          - type: map_at_5
            value: 32.144
          - type: mrr_at_1
            value: 31.083
          - type: mrr_at_10
            value: 39.199
          - type: mrr_at_100
            value: 39.835
          - type: mrr_at_1000
            value: 39.892
          - type: mrr_at_20
            value: 39.57
          - type: mrr_at_3
            value: 36.879
          - type: mrr_at_5
            value: 38.245000000000005
          - type: ndcg_at_1
            value: 31.083
          - type: ndcg_at_10
            value: 38.553
          - type: ndcg_at_100
            value: 42.685
          - type: ndcg_at_1000
            value: 45.144
          - type: ndcg_at_20
            value: 40.116
          - type: ndcg_at_3
            value: 34.608
          - type: ndcg_at_5
            value: 36.551
          - type: precision_at_1
            value: 31.083
          - type: precision_at_10
            value: 7.28
          - type: precision_at_100
            value: 1.183
          - type: precision_at_1000
            value: 0.168
          - type: precision_at_20
            value: 4.322
          - type: precision_at_3
            value: 16.858
          - type: precision_at_5
            value: 12.127
          - type: recall_at_1
            value: 24.313000000000002
          - type: recall_at_10
            value: 48.117
          - type: recall_at_100
            value: 65.768
          - type: recall_at_1000
            value: 81.935
          - type: recall_at_20
            value: 53.689
          - type: recall_at_3
            value: 36.335
          - type: recall_at_5
            value: 41.803000000000004
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gaming
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: 4885aa143210c98657558c04aaf3dc47cfb54340
        metrics:
          - type: map_at_1
            value: 33.013999999999996
          - type: map_at_10
            value: 44.567
          - type: map_at_100
            value: 45.664
          - type: map_at_1000
            value: 45.732
          - type: map_at_20
            value: 45.190000000000005
          - type: map_at_3
            value: 41.393
          - type: map_at_5
            value: 43.147000000000006
          - type: mrr_at_1
            value: 37.806
          - type: mrr_at_10
            value: 47.841
          - type: mrr_at_100
            value: 48.597
          - type: mrr_at_1000
            value: 48.638
          - type: mrr_at_20
            value: 48.262
          - type: mrr_at_3
            value: 45.361000000000004
          - type: mrr_at_5
            value: 46.803
          - type: ndcg_at_1
            value: 37.806
          - type: ndcg_at_10
            value: 50.412
          - type: ndcg_at_100
            value: 55.019
          - type: ndcg_at_1000
            value: 56.52
          - type: ndcg_at_20
            value: 52.23100000000001
          - type: ndcg_at_3
            value: 44.944
          - type: ndcg_at_5
            value: 47.535
          - type: precision_at_1
            value: 37.806
          - type: precision_at_10
            value: 8.351
          - type: precision_at_100
            value: 1.163
          - type: precision_at_1000
            value: 0.134
          - type: precision_at_20
            value: 4.727
          - type: precision_at_3
            value: 20.376
          - type: precision_at_5
            value: 14.056
          - type: recall_at_1
            value: 33.013999999999996
          - type: recall_at_10
            value: 64.35600000000001
          - type: recall_at_100
            value: 84.748
          - type: recall_at_1000
            value: 95.525
          - type: recall_at_20
            value: 71.137
          - type: recall_at_3
            value: 49.726
          - type: recall_at_5
            value: 56.054
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gis
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: 5003b3064772da1887988e05400cf3806fe491f2
        metrics:
          - type: map_at_1
            value: 18.476
          - type: map_at_10
            value: 24.715999999999998
          - type: map_at_100
            value: 25.72
          - type: map_at_1000
            value: 25.826999999999998
          - type: map_at_20
            value: 25.276
          - type: map_at_3
            value: 22.656000000000002
          - type: map_at_5
            value: 23.737
          - type: mrr_at_1
            value: 20.113
          - type: mrr_at_10
            value: 26.423999999999996
          - type: mrr_at_100
            value: 27.328000000000003
          - type: mrr_at_1000
            value: 27.418
          - type: mrr_at_20
            value: 26.936
          - type: mrr_at_3
            value: 24.275
          - type: mrr_at_5
            value: 25.501
          - type: ndcg_at_1
            value: 20.113
          - type: ndcg_at_10
            value: 28.626
          - type: ndcg_at_100
            value: 33.649
          - type: ndcg_at_1000
            value: 36.472
          - type: ndcg_at_20
            value: 30.581999999999997
          - type: ndcg_at_3
            value: 24.490000000000002
          - type: ndcg_at_5
            value: 26.394000000000002
          - type: precision_at_1
            value: 20.113
          - type: precision_at_10
            value: 4.52
          - type: precision_at_100
            value: 0.739
          - type: precision_at_1000
            value: 0.10200000000000001
          - type: precision_at_20
            value: 2.706
          - type: precision_at_3
            value: 10.433
          - type: precision_at_5
            value: 7.48
          - type: recall_at_1
            value: 18.476
          - type: recall_at_10
            value: 39.129000000000005
          - type: recall_at_100
            value: 62.44
          - type: recall_at_1000
            value: 83.95700000000001
          - type: recall_at_20
            value: 46.611999999999995
          - type: recall_at_3
            value: 27.772000000000002
          - type: recall_at_5
            value: 32.312000000000005
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-mathematica
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: 90fceea13679c63fe563ded68f3b6f06e50061de
        metrics:
          - type: map_at_1
            value: 10.126
          - type: map_at_10
            value: 15.916
          - type: map_at_100
            value: 17.049
          - type: map_at_1000
            value: 17.19
          - type: map_at_20
            value: 16.569
          - type: map_at_3
            value: 13.986
          - type: map_at_5
            value: 15.052999999999999
          - type: mrr_at_1
            value: 13.059999999999999
          - type: mrr_at_10
            value: 19.52
          - type: mrr_at_100
            value: 20.599999999999998
          - type: mrr_at_1000
            value: 20.693
          - type: mrr_at_20
            value: 20.177999999999997
          - type: mrr_at_3
            value: 17.496000000000002
          - type: mrr_at_5
            value: 18.541
          - type: ndcg_at_1
            value: 13.059999999999999
          - type: ndcg_at_10
            value: 19.987
          - type: ndcg_at_100
            value: 25.602000000000004
          - type: ndcg_at_1000
            value: 29.171999999999997
          - type: ndcg_at_20
            value: 22.31
          - type: ndcg_at_3
            value: 16.286
          - type: ndcg_at_5
            value: 17.931
          - type: precision_at_1
            value: 13.059999999999999
          - type: precision_at_10
            value: 3.9050000000000002
          - type: precision_at_100
            value: 0.771
          - type: precision_at_1000
            value: 0.123
          - type: precision_at_20
            value: 2.606
          - type: precision_at_3
            value: 8.167
          - type: precision_at_5
            value: 6.045
          - type: recall_at_1
            value: 10.126
          - type: recall_at_10
            value: 29.137
          - type: recall_at_100
            value: 53.824000000000005
          - type: recall_at_1000
            value: 79.373
          - type: recall_at_20
            value: 37.475
          - type: recall_at_3
            value: 18.791
          - type: recall_at_5
            value: 22.993
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-physics
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
        metrics:
          - type: map_at_1
            value: 25.281
          - type: map_at_10
            value: 34.875
          - type: map_at_100
            value: 36.268
          - type: map_at_1000
            value: 36.385
          - type: map_at_20
            value: 35.711999999999996
          - type: map_at_3
            value: 31.808999999999997
          - type: map_at_5
            value: 33.550999999999995
          - type: mrr_at_1
            value: 31.28
          - type: mrr_at_10
            value: 40.489000000000004
          - type: mrr_at_100
            value: 41.434
          - type: mrr_at_1000
            value: 41.491
          - type: mrr_at_20
            value: 41.088
          - type: mrr_at_3
            value: 38.033
          - type: mrr_at_5
            value: 39.621
          - type: ndcg_at_1
            value: 31.28
          - type: ndcg_at_10
            value: 40.716
          - type: ndcg_at_100
            value: 46.45
          - type: ndcg_at_1000
            value: 48.851
          - type: ndcg_at_20
            value: 43.216
          - type: ndcg_at_3
            value: 35.845
          - type: ndcg_at_5
            value: 38.251000000000005
          - type: precision_at_1
            value: 31.28
          - type: precision_at_10
            value: 7.623
          - type: precision_at_100
            value: 1.214
          - type: precision_at_1000
            value: 0.159
          - type: precision_at_20
            value: 4.625
          - type: precision_at_3
            value: 17.26
          - type: precision_at_5
            value: 12.435
          - type: recall_at_1
            value: 25.281
          - type: recall_at_10
            value: 52.476
          - type: recall_at_100
            value: 76.535
          - type: recall_at_1000
            value: 92.658
          - type: recall_at_20
            value: 61.211000000000006
          - type: recall_at_3
            value: 38.805
          - type: recall_at_5
            value: 45.053
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-programmers
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
        metrics:
          - type: map_at_1
            value: 20.092
          - type: map_at_10
            value: 27.805999999999997
          - type: map_at_100
            value: 29.137999999999998
          - type: map_at_1000
            value: 29.266
          - type: map_at_20
            value: 28.587
          - type: map_at_3
            value: 25.112000000000002
          - type: map_at_5
            value: 26.551000000000002
          - type: mrr_at_1
            value: 24.315
          - type: mrr_at_10
            value: 32.068000000000005
          - type: mrr_at_100
            value: 33.039
          - type: mrr_at_1000
            value: 33.114
          - type: mrr_at_20
            value: 32.66
          - type: mrr_at_3
            value: 29.49
          - type: mrr_at_5
            value: 30.906
          - type: ndcg_at_1
            value: 24.315
          - type: ndcg_at_10
            value: 32.9
          - type: ndcg_at_100
            value: 38.741
          - type: ndcg_at_1000
            value: 41.657
          - type: ndcg_at_20
            value: 35.338
          - type: ndcg_at_3
            value: 28.069
          - type: ndcg_at_5
            value: 30.169
          - type: precision_at_1
            value: 24.315
          - type: precision_at_10
            value: 6.2330000000000005
          - type: precision_at_100
            value: 1.072
          - type: precision_at_1000
            value: 0.15
          - type: precision_at_20
            value: 3.8580000000000005
          - type: precision_at_3
            value: 13.318
          - type: precision_at_5
            value: 9.748999999999999
          - type: recall_at_1
            value: 20.092
          - type: recall_at_10
            value: 43.832
          - type: recall_at_100
            value: 68.75099999999999
          - type: recall_at_1000
            value: 89.25
          - type: recall_at_20
            value: 52.445
          - type: recall_at_3
            value: 30.666
          - type: recall_at_5
            value: 35.873
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: 160c094312a0e1facb97e55eeddb698c0abe3571
        metrics:
          - type: map_at_1
            value: 19.317
          - type: map_at_10
            value: 26.653
          - type: map_at_100
            value: 28.011999999999997
          - type: map_at_1000
            value: 28.231
          - type: map_at_20
            value: 27.301
          - type: map_at_3
            value: 23.763
          - type: map_at_5
            value: 25.391000000000002
          - type: mrr_at_1
            value: 24.506
          - type: mrr_at_10
            value: 31.991999999999997
          - type: mrr_at_100
            value: 32.924
          - type: mrr_at_1000
            value: 32.993
          - type: mrr_at_20
            value: 32.521
          - type: mrr_at_3
            value: 29.48
          - type: mrr_at_5
            value: 30.982
          - type: ndcg_at_1
            value: 24.506
          - type: ndcg_at_10
            value: 32.202999999999996
          - type: ndcg_at_100
            value: 37.797
          - type: ndcg_at_1000
            value: 40.859
          - type: ndcg_at_20
            value: 34.098
          - type: ndcg_at_3
            value: 27.552
          - type: ndcg_at_5
            value: 29.781000000000002
          - type: precision_at_1
            value: 24.506
          - type: precision_at_10
            value: 6.462
          - type: precision_at_100
            value: 1.35
          - type: precision_at_1000
            value: 0.22499999999999998
          - type: precision_at_20
            value: 4.071000000000001
          - type: precision_at_3
            value: 13.241
          - type: precision_at_5
            value: 9.921000000000001
          - type: recall_at_1
            value: 19.317
          - type: recall_at_10
            value: 42.296
          - type: recall_at_100
            value: 68.2
          - type: recall_at_1000
            value: 88.565
          - type: recall_at_20
            value: 49.883
          - type: recall_at_3
            value: 28.608
          - type: recall_at_5
            value: 34.854
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-stats
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
        metrics:
          - type: map_at_1
            value: 18
          - type: map_at_10
            value: 24.444
          - type: map_at_100
            value: 25.205
          - type: map_at_1000
            value: 25.291000000000004
          - type: map_at_20
            value: 24.834
          - type: map_at_3
            value: 22.311
          - type: map_at_5
            value: 23.442
          - type: mrr_at_1
            value: 20.552
          - type: mrr_at_10
            value: 27.028999999999996
          - type: mrr_at_100
            value: 27.706999999999997
          - type: mrr_at_1000
            value: 27.775
          - type: mrr_at_20
            value: 27.366
          - type: mrr_at_3
            value: 25.051000000000002
          - type: mrr_at_5
            value: 26.063
          - type: ndcg_at_1
            value: 20.552
          - type: ndcg_at_10
            value: 28.519
          - type: ndcg_at_100
            value: 32.580999999999996
          - type: ndcg_at_1000
            value: 34.99
          - type: ndcg_at_20
            value: 29.848000000000003
          - type: ndcg_at_3
            value: 24.46
          - type: ndcg_at_5
            value: 26.273000000000003
          - type: precision_at_1
            value: 20.552
          - type: precision_at_10
            value: 4.801
          - type: precision_at_100
            value: 0.729
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_20
            value: 2.715
          - type: precision_at_3
            value: 10.940999999999999
          - type: precision_at_5
            value: 7.761
          - type: recall_at_1
            value: 18
          - type: recall_at_10
            value: 38.425
          - type: recall_at_100
            value: 57.885
          - type: recall_at_1000
            value: 75.945
          - type: recall_at_20
            value: 43.472
          - type: recall_at_3
            value: 27.483
          - type: recall_at_5
            value: 31.866
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-tex
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: 46989137a86843e03a6195de44b09deda022eec7
        metrics:
          - type: map_at_1
            value: 10.014000000000001
          - type: map_at_10
            value: 14.462
          - type: map_at_100
            value: 15.364
          - type: map_at_1000
            value: 15.482999999999999
          - type: map_at_20
            value: 14.931
          - type: map_at_3
            value: 12.842
          - type: map_at_5
            value: 13.697999999999999
          - type: mrr_at_1
            value: 12.526000000000002
          - type: mrr_at_10
            value: 17.433
          - type: mrr_at_100
            value: 18.296
          - type: mrr_at_1000
            value: 18.383
          - type: mrr_at_20
            value: 17.897
          - type: mrr_at_3
            value: 15.703
          - type: mrr_at_5
            value: 16.627
          - type: ndcg_at_1
            value: 12.526000000000002
          - type: ndcg_at_10
            value: 17.697
          - type: ndcg_at_100
            value: 22.33
          - type: ndcg_at_1000
            value: 25.587
          - type: ndcg_at_20
            value: 19.302
          - type: ndcg_at_3
            value: 14.606
          - type: ndcg_at_5
            value: 15.946
          - type: precision_at_1
            value: 12.526000000000002
          - type: precision_at_10
            value: 3.383
          - type: precision_at_100
            value: 0.6799999999999999
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_20
            value: 2.147
          - type: precision_at_3
            value: 7.02
          - type: precision_at_5
            value: 5.196
          - type: recall_at_1
            value: 10.014000000000001
          - type: recall_at_10
            value: 24.623
          - type: recall_at_100
            value: 45.795
          - type: recall_at_1000
            value: 69.904
          - type: recall_at_20
            value: 30.534
          - type: recall_at_3
            value: 15.955
          - type: recall_at_5
            value: 19.394
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-unix
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
        metrics:
          - type: map_at_1
            value: 19.156000000000002
          - type: map_at_10
            value: 26.144000000000002
          - type: map_at_100
            value: 27.157999999999998
          - type: map_at_1000
            value: 27.288
          - type: map_at_20
            value: 26.689
          - type: map_at_3
            value: 24.125
          - type: map_at_5
            value: 25.369000000000003
          - type: mrr_at_1
            value: 22.854
          - type: mrr_at_10
            value: 29.874000000000002
          - type: mrr_at_100
            value: 30.738
          - type: mrr_at_1000
            value: 30.826999999999998
          - type: mrr_at_20
            value: 30.354
          - type: mrr_at_3
            value: 27.689999999999998
          - type: mrr_at_5
            value: 29.131
          - type: ndcg_at_1
            value: 22.854
          - type: ndcg_at_10
            value: 30.469
          - type: ndcg_at_100
            value: 35.475
          - type: ndcg_at_1000
            value: 38.59
          - type: ndcg_at_20
            value: 32.333
          - type: ndcg_at_3
            value: 26.674999999999997
          - type: ndcg_at_5
            value: 28.707
          - type: precision_at_1
            value: 22.854
          - type: precision_at_10
            value: 5.1209999999999996
          - type: precision_at_100
            value: 0.8500000000000001
          - type: precision_at_1000
            value: 0.123
          - type: precision_at_20
            value: 3.0460000000000003
          - type: precision_at_3
            value: 12.127
          - type: precision_at_5
            value: 8.75
          - type: recall_at_1
            value: 19.156000000000002
          - type: recall_at_10
            value: 40.009
          - type: recall_at_100
            value: 62.419999999999995
          - type: recall_at_1000
            value: 84.585
          - type: recall_at_20
            value: 46.912
          - type: recall_at_3
            value: 29.733999999999998
          - type: recall_at_5
            value: 34.741
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-webmasters
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: 160c094312a0e1facb97e55eeddb698c0abe3571
        metrics:
          - type: map_at_1
            value: 19.317
          - type: map_at_10
            value: 26.653
          - type: map_at_100
            value: 28.011999999999997
          - type: map_at_1000
            value: 28.231
          - type: map_at_20
            value: 27.301
          - type: map_at_3
            value: 23.763
          - type: map_at_5
            value: 25.391000000000002
          - type: mrr_at_1
            value: 24.506
          - type: mrr_at_10
            value: 31.991999999999997
          - type: mrr_at_100
            value: 32.924
          - type: mrr_at_1000
            value: 32.993
          - type: mrr_at_20
            value: 32.521
          - type: mrr_at_3
            value: 29.48
          - type: mrr_at_5
            value: 30.982
          - type: ndcg_at_1
            value: 24.506
          - type: ndcg_at_10
            value: 32.202999999999996
          - type: ndcg_at_100
            value: 37.797
          - type: ndcg_at_1000
            value: 40.859
          - type: ndcg_at_20
            value: 34.098
          - type: ndcg_at_3
            value: 27.552
          - type: ndcg_at_5
            value: 29.781000000000002
          - type: precision_at_1
            value: 24.506
          - type: precision_at_10
            value: 6.462
          - type: precision_at_100
            value: 1.35
          - type: precision_at_1000
            value: 0.22499999999999998
          - type: precision_at_20
            value: 4.071000000000001
          - type: precision_at_3
            value: 13.241
          - type: precision_at_5
            value: 9.921000000000001
          - type: recall_at_1
            value: 19.317
          - type: recall_at_10
            value: 42.296
          - type: recall_at_100
            value: 68.2
          - type: recall_at_1000
            value: 88.565
          - type: recall_at_20
            value: 49.883
          - type: recall_at_3
            value: 28.608
          - type: recall_at_5
            value: 34.854
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-wordpress
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 12.822
          - type: map_at_10
            value: 18.055
          - type: map_at_100
            value: 18.942
          - type: map_at_1000
            value: 19.057
          - type: map_at_20
            value: 18.544
          - type: map_at_3
            value: 15.964
          - type: map_at_5
            value: 16.833000000000002
          - type: mrr_at_1
            value: 14.048
          - type: mrr_at_10
            value: 19.489
          - type: mrr_at_100
            value: 20.392
          - type: mrr_at_1000
            value: 20.49
          - type: mrr_at_20
            value: 19.979
          - type: mrr_at_3
            value: 17.344
          - type: mrr_at_5
            value: 18.287
          - type: ndcg_at_1
            value: 14.048
          - type: ndcg_at_10
            value: 21.737000000000002
          - type: ndcg_at_100
            value: 26.383000000000003
          - type: ndcg_at_1000
            value: 29.555
          - type: ndcg_at_20
            value: 23.463
          - type: ndcg_at_3
            value: 17.29
          - type: ndcg_at_5
            value: 18.829
          - type: precision_at_1
            value: 14.048
          - type: precision_at_10
            value: 3.6229999999999998
          - type: precision_at_100
            value: 0.641
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_20
            value: 2.1999999999999997
          - type: precision_at_3
            value: 7.2090000000000005
          - type: precision_at_5
            value: 5.213
          - type: recall_at_1
            value: 12.822
          - type: recall_at_10
            value: 32.123000000000005
          - type: recall_at_100
            value: 53.657999999999994
          - type: recall_at_1000
            value: 77.72200000000001
          - type: recall_at_20
            value: 38.66
          - type: recall_at_3
            value: 19.814999999999998
          - type: recall_at_5
            value: 23.432
      - task:
          type: Retrieval
        dataset:
          type: mteb/climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
        metrics:
          - type: map_at_1
            value: 13.119
          - type: map_at_10
            value: 22.999
          - type: map_at_100
            value: 25.108000000000004
          - type: map_at_1000
            value: 25.306
          - type: map_at_20
            value: 24.141000000000002
          - type: map_at_3
            value: 19.223000000000003
          - type: map_at_5
            value: 21.181
          - type: mrr_at_1
            value: 30.554
          - type: mrr_at_10
            value: 42.553000000000004
          - type: mrr_at_100
            value: 43.498
          - type: mrr_at_1000
            value: 43.527
          - type: mrr_at_20
            value: 43.193
          - type: mrr_at_3
            value: 39.283
          - type: mrr_at_5
            value: 41.143
          - type: ndcg_at_1
            value: 30.554
          - type: ndcg_at_10
            value: 31.946
          - type: ndcg_at_100
            value: 39.934999999999995
          - type: ndcg_at_1000
            value: 43.256
          - type: ndcg_at_20
            value: 35.101
          - type: ndcg_at_3
            value: 26.489
          - type: ndcg_at_5
            value: 28.272000000000002
          - type: precision_at_1
            value: 30.554
          - type: precision_at_10
            value: 10.039
          - type: precision_at_100
            value: 1.864
          - type: precision_at_1000
            value: 0.248
          - type: precision_at_20
            value: 6.371
          - type: precision_at_3
            value: 20.174
          - type: precision_at_5
            value: 15.296000000000001
          - type: recall_at_1
            value: 13.119
          - type: recall_at_10
            value: 37.822
          - type: recall_at_100
            value: 65.312
          - type: recall_at_1000
            value: 83.817
          - type: recall_at_20
            value: 46.760000000000005
          - type: recall_at_3
            value: 23.858999999999998
          - type: recall_at_5
            value: 29.609999999999996
      - task:
          type: Retrieval
        dataset:
          type: mteb/dbpedia
          name: MTEB DBPedia
          config: default
          split: test
          revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
        metrics:
          - type: map_at_1
            value: 8.176
          - type: map_at_10
            value: 19.594
          - type: map_at_100
            value: 28.081
          - type: map_at_1000
            value: 29.864
          - type: map_at_20
            value: 22.983999999999998
          - type: map_at_3
            value: 13.923
          - type: map_at_5
            value: 16.597
          - type: mrr_at_1
            value: 66.75
          - type: mrr_at_10
            value: 75.82600000000001
          - type: mrr_at_100
            value: 76.145
          - type: mrr_at_1000
            value: 76.14999999999999
          - type: mrr_at_20
            value: 76.074
          - type: mrr_at_3
            value: 74.333
          - type: mrr_at_5
            value: 75.25800000000001
          - type: ndcg_at_1
            value: 54.50000000000001
          - type: ndcg_at_10
            value: 41.806
          - type: ndcg_at_100
            value: 47.067
          - type: ndcg_at_1000
            value: 54.397
          - type: ndcg_at_20
            value: 41.727
          - type: ndcg_at_3
            value: 46.92
          - type: ndcg_at_5
            value: 44.381
          - type: precision_at_1
            value: 66.75
          - type: precision_at_10
            value: 33.35
          - type: precision_at_100
            value: 10.92
          - type: precision_at_1000
            value: 2.222
          - type: precision_at_20
            value: 25.862000000000002
          - type: precision_at_3
            value: 51.417
          - type: precision_at_5
            value: 43.65
          - type: recall_at_1
            value: 8.176
          - type: recall_at_10
            value: 26.029000000000003
          - type: recall_at_100
            value: 53.872
          - type: recall_at_1000
            value: 76.895
          - type: recall_at_20
            value: 34.192
          - type: recall_at_3
            value: 15.789
          - type: recall_at_5
            value: 20.255000000000003
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 48.22
          - type: f1
            value: 43.59074485488622
      - task:
          type: Retrieval
        dataset:
          type: mteb/fever
          name: MTEB FEVER
          config: default
          split: test
          revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
        metrics:
          - type: map_at_1
            value: 40.872
          - type: map_at_10
            value: 55.178000000000004
          - type: map_at_100
            value: 55.859
          - type: map_at_1000
            value: 55.881
          - type: map_at_20
            value: 55.66
          - type: map_at_3
            value: 51.4
          - type: map_at_5
            value: 53.754000000000005
          - type: mrr_at_1
            value: 43.744
          - type: mrr_at_10
            value: 58.36900000000001
          - type: mrr_at_100
            value: 58.911
          - type: mrr_at_1000
            value: 58.916999999999994
          - type: mrr_at_20
            value: 58.779
          - type: mrr_at_3
            value: 54.653
          - type: mrr_at_5
            value: 56.987
          - type: ndcg_at_1
            value: 43.744
          - type: ndcg_at_10
            value: 62.936
          - type: ndcg_at_100
            value: 65.666
          - type: ndcg_at_1000
            value: 66.08699999999999
          - type: ndcg_at_20
            value: 64.548
          - type: ndcg_at_3
            value: 55.543
          - type: ndcg_at_5
            value: 59.646
          - type: precision_at_1
            value: 43.744
          - type: precision_at_10
            value: 9.191
          - type: precision_at_100
            value: 1.072
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_20
            value: 4.967
          - type: precision_at_3
            value: 23.157
          - type: precision_at_5
            value: 16.115
          - type: recall_at_1
            value: 40.872
          - type: recall_at_10
            value: 83.818
          - type: recall_at_100
            value: 95.14200000000001
          - type: recall_at_1000
            value: 97.897
          - type: recall_at_20
            value: 89.864
          - type: recall_at_3
            value: 64.19200000000001
          - type: recall_at_5
            value: 74.029
      - task:
          type: Retrieval
        dataset:
          type: mteb/fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: 27a168819829fe9bcd655c2df245fb19452e8e06
        metrics:
          - type: map_at_1
            value: 14.804999999999998
          - type: map_at_10
            value: 22.86
          - type: map_at_100
            value: 24.823999999999998
          - type: map_at_1000
            value: 25.041000000000004
          - type: map_at_20
            value: 23.881
          - type: map_at_3
            value: 20.09
          - type: map_at_5
            value: 21.39
          - type: mrr_at_1
            value: 29.938
          - type: mrr_at_10
            value: 37.041000000000004
          - type: mrr_at_100
            value: 38.196000000000005
          - type: mrr_at_1000
            value: 38.256
          - type: mrr_at_20
            value: 37.693
          - type: mrr_at_3
            value: 34.721999999999994
          - type: mrr_at_5
            value: 35.787
          - type: ndcg_at_1
            value: 29.938
          - type: ndcg_at_10
            value: 29.358
          - type: ndcg_at_100
            value: 37.544
          - type: ndcg_at_1000
            value: 41.499
          - type: ndcg_at_20
            value: 32.354
          - type: ndcg_at_3
            value: 26.434
          - type: ndcg_at_5
            value: 26.93
          - type: precision_at_1
            value: 29.938
          - type: precision_at_10
            value: 8.117
          - type: precision_at_100
            value: 1.611
          - type: precision_at_1000
            value: 0.232
          - type: precision_at_20
            value: 5.255
          - type: precision_at_3
            value: 17.49
          - type: precision_at_5
            value: 12.747
          - type: recall_at_1
            value: 14.804999999999998
          - type: recall_at_10
            value: 34.776
          - type: recall_at_100
            value: 66.279
          - type: recall_at_1000
            value: 89.96600000000001
          - type: recall_at_20
            value: 44.31
          - type: recall_at_3
            value: 23.623
          - type: recall_at_5
            value: 27.194000000000003
      - task:
          type: Retrieval
        dataset:
          type: mteb/hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: ab518f4d6fcca38d87c25209f94beba119d02014
        metrics:
          - type: map_at_1
            value: 38.555
          - type: map_at_10
            value: 54.20700000000001
          - type: map_at_100
            value: 55.177
          - type: map_at_1000
            value: 55.254999999999995
          - type: map_at_20
            value: 54.788000000000004
          - type: map_at_3
            value: 51.034
          - type: map_at_5
            value: 52.998
          - type: mrr_at_1
            value: 77.11
          - type: mrr_at_10
            value: 82.93199999999999
          - type: mrr_at_100
            value: 83.14200000000001
          - type: mrr_at_1000
            value: 83.15
          - type: mrr_at_20
            value: 83.062
          - type: mrr_at_3
            value: 81.95599999999999
          - type: mrr_at_5
            value: 82.586
          - type: ndcg_at_1
            value: 77.11
          - type: ndcg_at_10
            value: 63.853
          - type: ndcg_at_100
            value: 67.18499999999999
          - type: ndcg_at_1000
            value: 68.676
          - type: ndcg_at_20
            value: 65.279
          - type: ndcg_at_3
            value: 59.301
          - type: ndcg_at_5
            value: 61.822
          - type: precision_at_1
            value: 77.11
          - type: precision_at_10
            value: 13.044
          - type: precision_at_100
            value: 1.5630000000000002
          - type: precision_at_1000
            value: 0.17600000000000002
          - type: precision_at_20
            value: 6.979
          - type: precision_at_3
            value: 36.759
          - type: precision_at_5
            value: 24.054000000000002
          - type: recall_at_1
            value: 38.555
          - type: recall_at_10
            value: 65.21900000000001
          - type: recall_at_100
            value: 78.16300000000001
          - type: recall_at_1000
            value: 88.02799999999999
          - type: recall_at_20
            value: 69.791
          - type: recall_at_3
            value: 55.138
          - type: recall_at_5
            value: 60.135000000000005
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 69.8728
          - type: ap
            value: 63.98214492125858
          - type: f1
            value: 69.59975497754624
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification
          config: default
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 94.76288189694483
          - type: f1
            value: 94.52150972672682
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification
          config: default
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 76.83994528043777
          - type: f1
            value: 57.95571154189732
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification
          config: default
          split: test
          revision: 4672e20407010da34463acc759c162ca9734bca6
        metrics:
          - type: accuracy
            value: 46.1163416274378
          - type: f1
            value: 45.425692244093064
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification
          config: default
          split: test
          revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
        metrics:
          - type: accuracy
            value: 45.57834566240753
          - type: f1
            value: 43.84840097785479
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 32.86396397182615
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 34.018965727588565
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
        metrics:
          - type: map
            value: 31.286618059824573
          - type: mrr
            value: 32.481830769278965
      - task:
          type: Retrieval
        dataset:
          type: mteb/nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
        metrics:
          - type: map_at_1
            value: 4.236
          - type: map_at_10
            value: 9.352
          - type: map_at_100
            value: 12.382
          - type: map_at_1000
            value: 13.828999999999999
          - type: map_at_20
            value: 10.619
          - type: map_at_3
            value: 6.814000000000001
          - type: map_at_5
            value: 7.887
          - type: mrr_at_1
            value: 37.152
          - type: mrr_at_10
            value: 47.055
          - type: mrr_at_100
            value: 47.82
          - type: mrr_at_1000
            value: 47.86
          - type: mrr_at_20
            value: 47.605
          - type: mrr_at_3
            value: 44.118
          - type: mrr_at_5
            value: 46.115
          - type: ndcg_at_1
            value: 34.365
          - type: ndcg_at_10
            value: 28.473
          - type: ndcg_at_100
            value: 27.311999999999998
          - type: ndcg_at_1000
            value: 36.671
          - type: ndcg_at_20
            value: 27.137
          - type: ndcg_at_3
            value: 31.939
          - type: ndcg_at_5
            value: 30.428
          - type: precision_at_1
            value: 36.223
          - type: precision_at_10
            value: 21.858
          - type: precision_at_100
            value: 7.417999999999999
          - type: precision_at_1000
            value: 2.0709999999999997
          - type: precision_at_20
            value: 16.502
          - type: precision_at_3
            value: 30.857
          - type: precision_at_5
            value: 26.997
          - type: recall_at_1
            value: 4.236
          - type: recall_at_10
            value: 13.489
          - type: recall_at_100
            value: 29.580000000000002
          - type: recall_at_1000
            value: 62.726000000000006
          - type: recall_at_20
            value: 18.346999999999998
          - type: recall_at_3
            value: 7.811
          - type: recall_at_5
            value: 10.086
      - task:
          type: Retrieval
        dataset:
          type: mteb/nq
          name: MTEB NQ
          config: default
          split: test
          revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
        metrics:
          - type: map_at_1
            value: 21.123
          - type: map_at_10
            value: 34.429
          - type: map_at_100
            value: 35.803000000000004
          - type: map_at_1000
            value: 35.853
          - type: map_at_20
            value: 35.308
          - type: map_at_3
            value: 30.095
          - type: map_at_5
            value: 32.435
          - type: mrr_at_1
            value: 23.841
          - type: mrr_at_10
            value: 36.864999999999995
          - type: mrr_at_100
            value: 37.935
          - type: mrr_at_1000
            value: 37.97
          - type: mrr_at_20
            value: 37.566
          - type: mrr_at_3
            value: 32.918
          - type: mrr_at_5
            value: 35.11
          - type: ndcg_at_1
            value: 23.841
          - type: ndcg_at_10
            value: 42.043
          - type: ndcg_at_100
            value: 48.015
          - type: ndcg_at_1000
            value: 49.152
          - type: ndcg_at_20
            value: 44.936
          - type: ndcg_at_3
            value: 33.513999999999996
          - type: ndcg_at_5
            value: 37.541999999999994
          - type: precision_at_1
            value: 23.841
          - type: precision_at_10
            value: 7.454
          - type: precision_at_100
            value: 1.081
          - type: precision_at_1000
            value: 0.11900000000000001
          - type: precision_at_20
            value: 4.413
          - type: precision_at_3
            value: 15.672
          - type: precision_at_5
            value: 11.657
          - type: recall_at_1
            value: 21.123
          - type: recall_at_10
            value: 63.096
          - type: recall_at_100
            value: 89.27199999999999
          - type: recall_at_1000
            value: 97.69
          - type: recall_at_20
            value: 73.873
          - type: recall_at_3
            value: 40.588
          - type: recall_at_5
            value: 49.928
      - task:
          type: Retrieval
        dataset:
          type: mteb/quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
        metrics:
          - type: map_at_1
            value: 70.255
          - type: map_at_10
            value: 84.387
          - type: map_at_100
            value: 85.027
          - type: map_at_1000
            value: 85.043
          - type: map_at_20
            value: 84.809
          - type: map_at_3
            value: 81.5
          - type: map_at_5
            value: 83.286
          - type: mrr_at_1
            value: 80.85
          - type: mrr_at_10
            value: 87.25699999999999
          - type: mrr_at_100
            value: 87.363
          - type: mrr_at_1000
            value: 87.363
          - type: mrr_at_20
            value: 87.336
          - type: mrr_at_3
            value: 86.357
          - type: mrr_at_5
            value: 86.939
          - type: ndcg_at_1
            value: 80.86
          - type: ndcg_at_10
            value: 88.151
          - type: ndcg_at_100
            value: 89.381
          - type: ndcg_at_1000
            value: 89.47800000000001
          - type: ndcg_at_20
            value: 88.82100000000001
          - type: ndcg_at_3
            value: 85.394
          - type: ndcg_at_5
            value: 86.855
          - type: precision_at_1
            value: 80.86
          - type: precision_at_10
            value: 13.397
          - type: precision_at_100
            value: 1.5310000000000001
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_20
            value: 7.106999999999999
          - type: precision_at_3
            value: 37.46
          - type: precision_at_5
            value: 24.568
          - type: recall_at_1
            value: 70.255
          - type: recall_at_10
            value: 95.405
          - type: recall_at_100
            value: 99.56
          - type: recall_at_1000
            value: 99.98599999999999
          - type: recall_at_20
            value: 97.544
          - type: recall_at_3
            value: 87.414
          - type: recall_at_5
            value: 91.598
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 54.7557403999403
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
        metrics:
          - type: v_measure
            value: 56.2773308957202
      - task:
          type: Retrieval
        dataset:
          type: mteb/scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
        metrics:
          - type: map_at_1
            value: 4.123
          - type: map_at_10
            value: 9.940999999999999
          - type: map_at_100
            value: 11.928999999999998
          - type: map_at_1000
            value: 12.257
          - type: map_at_20
            value: 10.866000000000001
          - type: map_at_3
            value: 7.091
          - type: map_at_5
            value: 8.393
          - type: mrr_at_1
            value: 20.3
          - type: mrr_at_10
            value: 30.068
          - type: mrr_at_100
            value: 31.296000000000003
          - type: mrr_at_1000
            value: 31.36
          - type: mrr_at_20
            value: 30.756
          - type: mrr_at_3
            value: 26.667
          - type: mrr_at_5
            value: 28.616999999999997
          - type: ndcg_at_1
            value: 20.3
          - type: ndcg_at_10
            value: 17.305
          - type: ndcg_at_100
            value: 25.529000000000003
          - type: ndcg_at_1000
            value: 31.41
          - type: ndcg_at_20
            value: 19.967
          - type: ndcg_at_3
            value: 16.022
          - type: ndcg_at_5
            value: 14.12
          - type: precision_at_1
            value: 20.3
          - type: precision_at_10
            value: 9.06
          - type: precision_at_100
            value: 2.103
          - type: precision_at_1000
            value: 0.35200000000000004
          - type: precision_at_20
            value: 6.075
          - type: precision_at_3
            value: 14.832999999999998
          - type: precision_at_5
            value: 12.36
          - type: recall_at_1
            value: 4.123
          - type: recall_at_10
            value: 18.383
          - type: recall_at_100
            value: 42.67
          - type: recall_at_1000
            value: 71.44800000000001
          - type: recall_at_20
            value: 24.64
          - type: recall_at_3
            value: 9.043
          - type: recall_at_5
            value: 12.543000000000001
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
        metrics:
          - type: cos_sim_pearson
            value: 84.37101718384514
          - type: cos_sim_spearman
            value: 80.73657031880697
          - type: euclidean_pearson
            value: 81.42351850520845
          - type: euclidean_spearman
            value: 80.81452496851979
          - type: manhattan_pearson
            value: 81.47676252115669
          - type: manhattan_spearman
            value: 80.87566944708885
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 84.79559176971591
          - type: cos_sim_spearman
            value: 75.41866597445552
          - type: euclidean_pearson
            value: 83.20287101163838
          - type: euclidean_spearman
            value: 75.54564777571143
          - type: manhattan_pearson
            value: 83.24622548900163
          - type: manhattan_spearman
            value: 75.63826258190343
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 84.63322096299294
          - type: cos_sim_spearman
            value: 85.48272638914783
          - type: euclidean_pearson
            value: 85.57327707819331
          - type: euclidean_spearman
            value: 85.90735298172922
          - type: manhattan_pearson
            value: 85.5744191274933
          - type: manhattan_spearman
            value: 85.90828008488766
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 82.05530140566407
          - type: cos_sim_spearman
            value: 78.85454907951474
          - type: euclidean_pearson
            value: 81.4307311680376
          - type: euclidean_spearman
            value: 78.99131623529348
          - type: manhattan_pearson
            value: 81.46870892683134
          - type: manhattan_spearman
            value: 79.05473823658481
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 83.66620817683379
          - type: cos_sim_spearman
            value: 85.23347998035328
          - type: euclidean_pearson
            value: 84.59001637865366
          - type: euclidean_spearman
            value: 85.0081410316597
          - type: manhattan_pearson
            value: 84.59742325369818
          - type: manhattan_spearman
            value: 85.01721329704324
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 79.86344730144208
          - type: cos_sim_spearman
            value: 82.15966778685441
          - type: euclidean_pearson
            value: 81.85580574642779
          - type: euclidean_spearman
            value: 82.06482873417123
          - type: manhattan_pearson
            value: 81.82971046102377
          - type: manhattan_spearman
            value: 82.04185436355144
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17
          config: default
          split: test
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
        metrics:
          - type: cos_sim_pearson
            value: 31.440481026661672
          - type: cos_sim_spearman
            value: 31.592743544965913
          - type: euclidean_pearson
            value: 31.15111049327518
          - type: euclidean_spearman
            value: 30.555124184361464
          - type: manhattan_pearson
            value: 31.724139249295654
          - type: manhattan_spearman
            value: 30.483389245793504
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22
          config: default
          split: test
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
        metrics:
          - type: cos_sim_pearson
            value: 34.51489724275415
          - type: cos_sim_spearman
            value: 47.06532141601629
          - type: euclidean_pearson
            value: 33.28904737503036
          - type: euclidean_spearman
            value: 45.111172981641865
          - type: manhattan_pearson
            value: 33.36374172942392
          - type: manhattan_spearman
            value: 45.100940945158534
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 82.09996292950329
          - type: cos_sim_spearman
            value: 82.69376206796092
          - type: euclidean_pearson
            value: 82.83254956369134
          - type: euclidean_spearman
            value: 82.34202999843637
          - type: manhattan_pearson
            value: 82.8048494319632
          - type: manhattan_spearman
            value: 82.34713123336984
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 82.1402269601644
          - type: mrr
            value: 94.84447197682492
      - task:
          type: Retrieval
        dataset:
          type: mteb/scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: 0228b52cf27578f30900b9e5271d331663a030d7
        metrics:
          - type: map_at_1
            value: 49.138999999999996
          - type: map_at_10
            value: 60.288
          - type: map_at_100
            value: 61.082
          - type: map_at_1000
            value: 61.11
          - type: map_at_20
            value: 60.831999999999994
          - type: map_at_3
            value: 57.106
          - type: map_at_5
            value: 58.857000000000006
          - type: mrr_at_1
            value: 51.333
          - type: mrr_at_10
            value: 61.364
          - type: mrr_at_100
            value: 62.029999999999994
          - type: mrr_at_1000
            value: 62.056
          - type: mrr_at_20
            value: 61.85000000000001
          - type: mrr_at_3
            value: 58.721999999999994
          - type: mrr_at_5
            value: 60.221999999999994
          - type: ndcg_at_1
            value: 51.333
          - type: ndcg_at_10
            value: 65.71900000000001
          - type: ndcg_at_100
            value: 69.036
          - type: ndcg_at_1000
            value: 69.626
          - type: ndcg_at_20
            value: 67.571
          - type: ndcg_at_3
            value: 60.019
          - type: ndcg_at_5
            value: 62.733000000000004
          - type: precision_at_1
            value: 51.333
          - type: precision_at_10
            value: 9.067
          - type: precision_at_100
            value: 1.083
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_20
            value: 4.95
          - type: precision_at_3
            value: 23.889
          - type: precision_at_5
            value: 16
          - type: recall_at_1
            value: 49.138999999999996
          - type: recall_at_10
            value: 81.256
          - type: recall_at_100
            value: 95.6
          - type: recall_at_1000
            value: 100
          - type: recall_at_20
            value: 88.289
          - type: recall_at_3
            value: 66.078
          - type: recall_at_5
            value: 72.661
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.73762376237623
          - type: cos_sim_ap
            value: 93.02149432690442
          - type: cos_sim_f1
            value: 86.59079663532904
          - type: cos_sim_precision
            value: 85.70029382957884
          - type: cos_sim_recall
            value: 87.5
          - type: dot_accuracy
            value: 99.73267326732673
          - type: dot_ap
            value: 92.38661051842968
          - type: dot_f1
            value: 85.92283628779978
          - type: dot_precision
            value: 89.76034858387798
          - type: dot_recall
            value: 82.39999999999999
          - type: euclidean_accuracy
            value: 99.73960396039604
          - type: euclidean_ap
            value: 92.99557708360517
          - type: euclidean_f1
            value: 86.49183572488866
          - type: euclidean_precision
            value: 85.60235063663075
          - type: euclidean_recall
            value: 87.4
          - type: manhattan_accuracy
            value: 99.74059405940594
          - type: manhattan_ap
            value: 93.24237279644005
          - type: manhattan_f1
            value: 86.77727501256913
          - type: manhattan_precision
            value: 87.25985844287159
          - type: manhattan_recall
            value: 86.3
          - type: max_accuracy
            value: 99.74059405940594
          - type: max_ap
            value: 93.24237279644005
          - type: max_f1
            value: 86.77727501256913
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 63.94924261127149
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 32.22297034902405
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 46.12948438780115
          - type: mrr
            value: 46.77186783804431
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.02235612863601
          - type: cos_sim_spearman
            value: 30.567504287706598
          - type: dot_pearson
            value: 28.943978981614897
          - type: dot_spearman
            value: 29.905635915797358
      - task:
          type: Retrieval
        dataset:
          type: mteb/trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
        metrics:
          - type: map_at_1
            value: 0.173
          - type: map_at_10
            value: 1.124
          - type: map_at_100
            value: 5.645
          - type: map_at_1000
            value: 14.965
          - type: map_at_20
            value: 1.876
          - type: map_at_3
            value: 0.45599999999999996
          - type: map_at_5
            value: 0.699
          - type: mrr_at_1
            value: 70
          - type: mrr_at_10
            value: 81.786
          - type: mrr_at_100
            value: 81.786
          - type: mrr_at_1000
            value: 81.786
          - type: mrr_at_20
            value: 81.786
          - type: mrr_at_3
            value: 80
          - type: mrr_at_5
            value: 81.5
          - type: ndcg_at_1
            value: 65
          - type: ndcg_at_10
            value: 53.88699999999999
          - type: ndcg_at_100
            value: 38.028
          - type: ndcg_at_1000
            value: 37.183
          - type: ndcg_at_20
            value: 49.286
          - type: ndcg_at_3
            value: 63.05
          - type: ndcg_at_5
            value: 59.49100000000001
          - type: precision_at_1
            value: 70
          - type: precision_at_10
            value: 55.400000000000006
          - type: precision_at_100
            value: 38.800000000000004
          - type: precision_at_1000
            value: 17.082
          - type: precision_at_20
            value: 50.7
          - type: precision_at_3
            value: 66.667
          - type: precision_at_5
            value: 62.4
          - type: recall_at_1
            value: 0.173
          - type: recall_at_10
            value: 1.353
          - type: recall_at_100
            value: 8.887
          - type: recall_at_1000
            value: 36.012
          - type: recall_at_20
            value: 2.476
          - type: recall_at_3
            value: 0.508
          - type: recall_at_5
            value: 0.795
      - task:
          type: Retrieval
        dataset:
          type: mteb/touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
        metrics:
          - type: map_at_1
            value: 2.614
          - type: map_at_10
            value: 6.651999999999999
          - type: map_at_100
            value: 11.59
          - type: map_at_1000
            value: 13.044
          - type: map_at_20
            value: 8.702
          - type: map_at_3
            value: 4.159
          - type: map_at_5
            value: 5.327
          - type: mrr_at_1
            value: 30.612000000000002
          - type: mrr_at_10
            value: 42.664
          - type: mrr_at_100
            value: 43.957
          - type: mrr_at_1000
            value: 43.957
          - type: mrr_at_20
            value: 43.193
          - type: mrr_at_3
            value: 40.476
          - type: mrr_at_5
            value: 42.007
          - type: ndcg_at_1
            value: 27.551
          - type: ndcg_at_10
            value: 18.098
          - type: ndcg_at_100
            value: 30.019000000000002
          - type: ndcg_at_1000
            value: 42.179
          - type: ndcg_at_20
            value: 19.552
          - type: ndcg_at_3
            value: 21.22
          - type: ndcg_at_5
            value: 19.774
          - type: precision_at_1
            value: 30.612000000000002
          - type: precision_at_10
            value: 15.101999999999999
          - type: precision_at_100
            value: 6.510000000000001
          - type: precision_at_1000
            value: 1.4569999999999999
          - type: precision_at_20
            value: 12.449
          - type: precision_at_3
            value: 22.448999999999998
          - type: precision_at_5
            value: 19.592000000000002
          - type: recall_at_1
            value: 2.614
          - type: recall_at_10
            value: 11.068
          - type: recall_at_100
            value: 42.317
          - type: recall_at_1000
            value: 79.063
          - type: recall_at_20
            value: 18.589
          - type: recall_at_3
            value: 5.06
          - type: recall_at_5
            value: 7.356
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
        metrics:
          - type: accuracy
            value: 75.0146484375
          - type: ap
            value: 16.80191476928431
          - type: f1
            value: 58.08037205204817
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 61.80249009620826
          - type: f1
            value: 62.24155926661914
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 47.074846780747094
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 85.21785778148656
          - type: cos_sim_ap
            value: 71.06584074764645
          - type: cos_sim_f1
            value: 65.81720166625826
          - type: cos_sim_precision
            value: 61.43641354071363
          - type: cos_sim_recall
            value: 70.87071240105541
          - type: dot_accuracy
            value: 84.30589497526375
          - type: dot_ap
            value: 68.85872202019365
          - type: dot_f1
            value: 64.20295157946092
          - type: dot_precision
            value: 59.69607620775687
          - type: dot_recall
            value: 69.44591029023746
          - type: euclidean_accuracy
            value: 85.21189724026942
          - type: euclidean_ap
            value: 71.18847194129523
          - type: euclidean_f1
            value: 66.00049962528105
          - type: euclidean_precision
            value: 62.66603415559773
          - type: euclidean_recall
            value: 69.70976253298153
          - type: manhattan_accuracy
            value: 85.25958157000656
          - type: manhattan_ap
            value: 71.12967638566641
          - type: manhattan_f1
            value: 65.77477594492791
          - type: manhattan_precision
            value: 64.77359938603223
          - type: manhattan_recall
            value: 66.80738786279683
          - type: max_accuracy
            value: 85.25958157000656
          - type: max_ap
            value: 71.18847194129523
          - type: max_f1
            value: 66.00049962528105
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.22330888345559
          - type: cos_sim_ap
            value: 84.40304506741951
          - type: cos_sim_f1
            value: 76.46823520855303
          - type: cos_sim_precision
            value: 72.45537867824409
          - type: cos_sim_recall
            value: 80.95164767477672
          - type: dot_accuracy
            value: 87.9400007761866
          - type: dot_ap
            value: 83.63499141834609
          - type: dot_f1
            value: 75.98620939938304
          - type: dot_precision
            value: 71.86792064254823
          - type: dot_recall
            value: 80.60517400677548
          - type: euclidean_accuracy
            value: 88.21166608452671
          - type: euclidean_ap
            value: 84.40463988450605
          - type: euclidean_f1
            value: 76.52312831312177
          - type: euclidean_precision
            value: 72.40621135083138
          - type: euclidean_recall
            value: 81.13643363104404
          - type: manhattan_accuracy
            value: 88.24659448131331
          - type: manhattan_ap
            value: 84.42287495905447
          - type: manhattan_f1
            value: 76.54849595413475
          - type: manhattan_precision
            value: 72.39036442248302
          - type: manhattan_recall
            value: 81.21342777948875
          - type: max_accuracy
            value: 88.24659448131331
          - type: max_ap
            value: 84.42287495905447
          - type: max_f1
            value: 76.54849595413475

b1ade-embed-kd

This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was distilled with teacher model as

and student model as b1ade-embed

DataLoader:

torch.utils.data.dataloader.DataLoader of length 275105 with parameters:

{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MSELoss.MSELoss

Parameters of the fit()-Method:

{
    "epochs": 3,
    "evaluation_steps": 5000,
    "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "eps": 1e-06,
        "lr": 5e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 1000,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Results:

Good agreement with teacher model, at least on STS:

Teacher:

2024-05-20 16:29:07 - Teacher Performance:
2024-05-20 16:29:07 - EmbeddingSimilarityEvaluator: Evaluating the model on the sts-dev dataset:
2024-05-20 16:29:12 - Cosine-Similarity :	Pearson: 0.8561	Spearman: 0.8597
2024-05-20 16:29:12 - Manhattan-Distance:	Pearson: 0.8569	Spearman: 0.8567
2024-05-20 16:29:12 - Euclidean-Distance:	Pearson: 0.8575	Spearman: 0.8571
2024-05-20 16:29:12 - Dot-Product-Similarity:	Pearson: 0.8624	Spearman: 0.8662

Student:

2024-05-20 16:29:12 - Student Performance:
2024-05-20 16:29:12 - EmbeddingSimilarityEvaluator: Evaluating the model on the sts-dev dataset:
2024-05-20 16:29:17 - Cosine-Similarity :	Pearson: 0.8561	Spearman: 0.8597
2024-05-20 16:29:17 - Manhattan-Distance:	Pearson: 0.8569	Spearman: 0.8567
2024-05-20 16:29:17 - Euclidean-Distance:	Pearson: 0.8575	Spearman: 0.8571
2024-05-20 16:29:17 - Dot-Product-Similarity:	Pearson: 0.8624	Spearman: 0.8662