wahidww's picture
Model save
cba4e03 verified
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.808641975308642

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5712
  • Accuracy: 0.8086

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.87 5 1.3767 0.5370
1.289 1.91 11 1.3503 0.5494
1.289 2.96 17 1.3712 0.5556
1.0376 4.0 23 1.3064 0.5556
1.0376 4.87 28 1.1062 0.5802
0.8346 5.91 34 0.9249 0.6481
0.7096 6.96 40 0.8947 0.6235
0.7096 8.0 46 0.8626 0.6543
0.6356 8.87 51 0.6820 0.7222
0.6356 9.91 57 0.7249 0.7346
0.5956 10.96 63 0.6818 0.7407
0.5956 12.0 69 0.6111 0.7840
0.5534 12.87 74 0.6026 0.7778
0.519 13.91 80 0.6070 0.7901
0.519 14.96 86 0.5758 0.7963
0.5117 16.0 92 0.5791 0.7840
0.5117 16.87 97 0.5711 0.8025
0.4913 17.39 100 0.5712 0.8086

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2