metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- image_folder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: image_folder
type: image_folder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9983948635634029
swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the image_folder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0101
- Accuracy: 0.9984
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5175 | 0.99 | 46 | 0.2164 | 0.9069 |
0.1932 | 1.99 | 92 | 0.0470 | 0.9920 |
0.1321 | 2.98 | 138 | 0.0329 | 0.9920 |
0.0924 | 4.0 | 185 | 0.0158 | 0.9968 |
0.0725 | 4.97 | 230 | 0.0101 | 0.9984 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1