wahidww's picture
End of training
390ffda verified
|
raw
history blame
3.62 kB
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8709677419354839

swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3968
  • Accuracy: 0.8710

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8889 2 1.7756 0.2258
No log 1.7778 4 1.6784 0.2581
No log 2.6667 6 1.5861 0.3226
No log 4.0 9 1.3571 0.4194
No log 4.8889 11 1.0993 0.5484
No log 5.7778 13 0.9242 0.6452
1.4667 6.6667 15 0.7538 0.7097
1.4667 8.0 18 0.6294 0.7742
1.4667 8.8889 20 0.5326 0.7097
1.4667 9.7778 22 0.4848 0.7419
1.4667 10.6667 24 0.4832 0.7742
1.4667 12.0 27 0.4483 0.7742
1.4667 12.8889 29 0.4296 0.7742
0.5925 13.7778 31 0.4023 0.7742
0.5925 14.6667 33 0.4111 0.8387
0.5925 16.0 36 0.3873 0.8065
0.5925 16.8889 38 0.4029 0.8065
0.5925 17.7778 40 0.4065 0.8065
0.5925 18.6667 42 0.3864 0.8065
0.3285 20.0 45 0.3968 0.8710
0.3285 20.8889 47 0.3930 0.8710
0.3285 21.7778 49 0.3871 0.8710
0.3285 22.6667 51 0.3779 0.8065
0.3285 24.0 54 0.3698 0.8065
0.3285 24.8889 56 0.3726 0.8387
0.3285 25.7778 58 0.3732 0.8387
0.2621 26.6667 60 0.3732 0.8387

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0