metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8709677419354839
swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3968
- Accuracy: 0.8710
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8889 | 2 | 1.7756 | 0.2258 |
No log | 1.7778 | 4 | 1.6784 | 0.2581 |
No log | 2.6667 | 6 | 1.5861 | 0.3226 |
No log | 4.0 | 9 | 1.3571 | 0.4194 |
No log | 4.8889 | 11 | 1.0993 | 0.5484 |
No log | 5.7778 | 13 | 0.9242 | 0.6452 |
1.4667 | 6.6667 | 15 | 0.7538 | 0.7097 |
1.4667 | 8.0 | 18 | 0.6294 | 0.7742 |
1.4667 | 8.8889 | 20 | 0.5326 | 0.7097 |
1.4667 | 9.7778 | 22 | 0.4848 | 0.7419 |
1.4667 | 10.6667 | 24 | 0.4832 | 0.7742 |
1.4667 | 12.0 | 27 | 0.4483 | 0.7742 |
1.4667 | 12.8889 | 29 | 0.4296 | 0.7742 |
0.5925 | 13.7778 | 31 | 0.4023 | 0.7742 |
0.5925 | 14.6667 | 33 | 0.4111 | 0.8387 |
0.5925 | 16.0 | 36 | 0.3873 | 0.8065 |
0.5925 | 16.8889 | 38 | 0.4029 | 0.8065 |
0.5925 | 17.7778 | 40 | 0.4065 | 0.8065 |
0.5925 | 18.6667 | 42 | 0.3864 | 0.8065 |
0.3285 | 20.0 | 45 | 0.3968 | 0.8710 |
0.3285 | 20.8889 | 47 | 0.3930 | 0.8710 |
0.3285 | 21.7778 | 49 | 0.3871 | 0.8710 |
0.3285 | 22.6667 | 51 | 0.3779 | 0.8065 |
0.3285 | 24.0 | 54 | 0.3698 | 0.8065 |
0.3285 | 24.8889 | 56 | 0.3726 | 0.8387 |
0.3285 | 25.7778 | 58 | 0.3732 | 0.8387 |
0.2621 | 26.6667 | 60 | 0.3732 | 0.8387 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0