CodeBERTa-small-v1-sourcecode-detection-clf

This model is a fine-tuned version of huggingface/CodeBERTa-small-v1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0171
  • F1: 0.9975
  • Accuracy: 0.9975
  • Precision: 0.9975
  • Recall: 0.9975

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 320
  • eval_batch_size: 320
  • seed: 2024
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy Precision Recall
No log 0 0 0.6981 0.3337 0.5001 0.6162 0.5001
0.0294 0.1420 1000 0.0398 0.9947 0.9947 0.9947 0.9947
0.0076 0.2841 2000 0.0211 0.9968 0.9968 0.9968 0.9968
0.0053 0.4261 3000 0.0188 0.9973 0.9973 0.9973 0.9973
0.0056 0.5681 4000 0.0166 0.9976 0.9976 0.9976 0.9976
0.0044 0.7101 5000 0.0172 0.9975 0.9975 0.9975 0.9975
0.0009 0.8522 6000 0.0171 0.9975 0.9975 0.9975 0.9975
0.0052 0.9942 7000 0.0171 0.9975 0.9975 0.9975 0.9975

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
5
Safetensors
Model size
83.5M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for wandb/sourcecode-detection

Finetuned
(8)
this model