sdpokemon / README.md
wannyansports's picture
End of training
f69b714 verified
metadata
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - diffusers-training
  - text-to-image
  - diffusers
  - lora
  - template:sd-lora
widget:
  - text: <pokemon> with white background
    output:
      url: image_0.png
  - text: <pokemon> with white background
    output:
      url: image_1.png
  - text: <pokemon> with white background
    output:
      url: image_2.png
  - text: <pokemon> with white background
    output:
      url: image_3.png
base_model: emilianJR/epiCRealism
instance_prompt: <pokemon>
license: openrail++

SD1.5 LoRA DreamBooth - wannyansports/sdpokemon

Prompt
<pokemon> with white background
Prompt
<pokemon> with white background
Prompt
<pokemon> with white background
Prompt
<pokemon> with white background

Model description

These are wannyansports/sdpokemon LoRA adaption weights for emilianJR/epiCRealism.

Download model

Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

  • LoRA: download sdpokemon.safetensors here 💾.
    • Place it on your models/Lora folder.
    • On AUTOMATIC1111, load the LoRA by adding <lora:sdpokemon:1> to your prompt. On ComfyUI just load it as a regular LoRA.
  • Embeddings: download sdpokemon_emb.safetensors here 💾.
    • Place it on it on your embeddings folder
    • Use it by adding sdpokemon_emb to your prompt. For example, <pokemon> (you need both the LoRA and the embeddings as they were trained together for this LoRA)

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('wannyansports/sdpokemon', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='wannyansports/sdpokemon', filename='sdpokemon_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=[], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
        
image = pipeline('<pokemon> with white background').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept TOK → use <s0><s1> in your prompt

Details

All Files & versions.

The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: None.