See axolotl config
axolotl version: 0.4.0
base_model: NousResearch/Meta-Llama-3-70B
model_type: LlamaForCausalLM
tokenizer_type: PreTrainedTokenizerFast
#overrides_of_model_config:
# rope_scaling:
# type: linear
# factor: 4
special_tokens:
pad_token: "<|end_of_text|>"
gptq: false
gptq_disable_exllama: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: /workspace/axolotl/output.jsonl
ds_type: json
type: completion
data_files:
- /workspace/axolotl/output.jsonl
output_dir: ./lora-out-l3-10
adapter: qlora
lora_model_dir:
sequence_len: 10240
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 64
lora_dropout: 0.10
lora_target_linear: true
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
peft_use_dora: true
wandb_project: kalomaze-model
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 6
micro_batch_size: 1
num_epochs: 4
# optimizer: paged_adamw_8bit
# optimizer: adamw_bnb_8bit
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000015
cosine_min_lr_ratio: 0.2
max_grad_norm: 1.0
train_on_inputs: true
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 0
saves_per_epoch: 6
save_total_limit: 7
debug:
weight_decay: 0.0
# fsdp:
# - full_shard
# - auto_wrap
# fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_sync_module_states: true
# fsdp_offload_params: false
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: false
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
# fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
# fsdp_state_dict_type: FULL_STATE_DICT
seed: 246
lora-out-l3-10
This model is a fine-tuned version of NousResearch/Meta-Llama-3-70B on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 246
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 6
- total_train_batch_size: 48
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 4
Training results
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.2.1
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 3
Model tree for wave-on-discord/llama-3-70b-llc-2
Base model
NousResearch/Meta-Llama-3-70B