wcosmas's picture
End of training
2587ef5 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: convnext-tiny-224-finetuned-papsmear
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8897058823529411

convnext-tiny-224-finetuned-papsmear

This model is a fine-tuned version of facebook/convnext-tiny-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2836
  • Accuracy: 0.8897

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 9 1.7808 0.1691
1.8057 1.9487 19 1.6808 0.3309
1.7394 2.9744 29 1.5825 0.3382
1.6408 4.0 39 1.4576 0.375
1.5428 4.9231 48 1.3281 0.5221
1.3931 5.9487 58 1.2044 0.5588
1.2669 6.9744 68 1.0756 0.6103
1.1355 8.0 78 0.9845 0.6324
1.0379 8.9231 87 0.9260 0.6618
0.9571 9.9487 97 0.8539 0.6618
0.8376 10.9744 107 0.7998 0.7279
0.7942 12.0 117 0.7573 0.75
0.7095 12.9231 126 0.7005 0.7426
0.7022 13.9487 136 0.6834 0.7868
0.6504 14.9744 146 0.6552 0.7721
0.589 16.0 156 0.6192 0.8015
0.5679 16.9231 165 0.5738 0.8088
0.5236 17.9487 175 0.5617 0.8015
0.5244 18.9744 185 0.5073 0.8235
0.4781 20.0 195 0.5112 0.8162
0.453 20.9231 204 0.4650 0.8235
0.4544 21.9487 214 0.4591 0.8456
0.419 22.9744 224 0.4403 0.8309
0.4146 24.0 234 0.4292 0.8382
0.398 24.9231 243 0.4315 0.8382
0.3918 25.9487 253 0.3980 0.8676
0.361 26.9744 263 0.3758 0.8603
0.3355 28.0 273 0.3657 0.8603
0.3483 28.9231 282 0.3669 0.875
0.3171 29.9487 292 0.3492 0.8603
0.3249 30.9744 302 0.3400 0.875
0.3087 32.0 312 0.3251 0.875
0.3029 32.9231 321 0.3167 0.8824
0.3018 33.9487 331 0.3192 0.875
0.2823 34.9744 341 0.3066 0.875
0.2744 36.0 351 0.3003 0.875
0.258 36.9231 360 0.2964 0.875
0.2714 37.9487 370 0.3039 0.875
0.2486 38.9744 380 0.2937 0.875
0.2511 40.0 390 0.2739 0.8824
0.2511 40.9231 399 0.2836 0.8897
0.2659 41.9487 409 0.2804 0.875
0.2379 42.9744 419 0.2747 0.8824
0.2279 44.0 429 0.2726 0.8897
0.2153 44.9231 438 0.2732 0.8897
0.2461 45.9487 448 0.2738 0.8897
0.2482 46.1538 450 0.2738 0.8897

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1