Edit model card

esm2_t12_35M-lora-binding-sites_2024-04-25_17-02-01

This model is a fine-tuned version of facebook/esm2_t12_35M_UR50D on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3783
  • Accuracy: 0.8613

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005701568055793089
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 8893
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6443 1.0 24 0.6716 0.5977
0.6838 2.0 48 0.6690 0.5977
0.5906 3.0 72 0.6440 0.5977
0.585 4.0 96 0.5897 0.7012
0.6142 5.0 120 0.5522 0.6992
0.61 6.0 144 0.5307 0.7148
0.5131 7.0 168 0.5134 0.75
0.365 8.0 192 0.4437 0.8105
0.4282 9.0 216 0.4010 0.8379
0.3102 10.0 240 0.3643 0.8516
0.41 11.0 264 0.3624 0.8652
0.317 12.0 288 0.3877 0.8145
0.2332 13.0 312 0.3383 0.8672
0.2698 14.0 336 0.3389 0.8672
0.1326 15.0 360 0.3548 0.8535
0.1187 16.0 384 0.3313 0.8770
0.1597 17.0 408 0.3447 0.8652
0.1886 18.0 432 0.3543 0.8672
0.1883 19.0 456 0.3396 0.875
0.1156 20.0 480 0.3510 0.8652
0.2604 21.0 504 0.3529 0.875
0.1104 22.0 528 0.3654 0.8711
0.1723 23.0 552 0.3631 0.8691
0.1516 24.0 576 0.3719 0.8633
0.0731 25.0 600 0.3745 0.8672
0.1381 26.0 624 0.3765 0.8691
0.291 27.0 648 0.3760 0.8613
0.0924 28.0 672 0.3789 0.8633
0.2029 29.0 696 0.3783 0.8594
0.242 30.0 720 0.3783 0.8613

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.3
  • Pytorch 2.2.1
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for wcvz/esm2_t12_35M-lora-binding-sites_2024-04-25_17-02-01

Adapter
(5)
this model