esm2_t130_150M-lora-classifier_2024-04-26_00-25-40
This model is a fine-tuned version of facebook/esm2_t30_150M_UR50D on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6470
- Accuracy: 0.8887
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005701568055793089
- train_batch_size: 28
- eval_batch_size: 28
- seed: 8893
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 300
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7096 | 1.0 | 55 | 0.6718 | 0.6055 |
0.6769 | 2.0 | 110 | 0.6739 | 0.6055 |
0.579 | 3.0 | 165 | 0.6608 | 0.6484 |
0.5726 | 4.0 | 220 | 0.5777 | 0.7109 |
0.6381 | 5.0 | 275 | 0.5020 | 0.7676 |
0.183 | 6.0 | 330 | 0.3725 | 0.8320 |
0.3701 | 7.0 | 385 | 0.3508 | 0.8535 |
0.2147 | 8.0 | 440 | 0.3191 | 0.8711 |
0.1654 | 9.0 | 495 | 0.3036 | 0.875 |
0.1581 | 10.0 | 550 | 0.3761 | 0.8516 |
0.3459 | 11.0 | 605 | 0.3746 | 0.8594 |
0.3325 | 12.0 | 660 | 0.3025 | 0.8867 |
0.1237 | 13.0 | 715 | 0.2983 | 0.8770 |
0.5167 | 14.0 | 770 | 0.3044 | 0.8887 |
0.3541 | 15.0 | 825 | 0.2927 | 0.8906 |
0.0378 | 16.0 | 880 | 0.3669 | 0.8906 |
0.062 | 17.0 | 935 | 0.3298 | 0.8887 |
0.1695 | 18.0 | 990 | 0.2912 | 0.9004 |
0.0444 | 19.0 | 1045 | 0.3034 | 0.9004 |
0.1794 | 20.0 | 1100 | 0.3641 | 0.8828 |
0.0634 | 21.0 | 1155 | 0.3521 | 0.8867 |
0.0446 | 22.0 | 1210 | 0.3438 | 0.8887 |
0.0266 | 23.0 | 1265 | 0.4553 | 0.8867 |
0.2637 | 24.0 | 1320 | 0.4715 | 0.8867 |
0.159 | 25.0 | 1375 | 0.4323 | 0.8945 |
0.2401 | 26.0 | 1430 | 0.6019 | 0.8809 |
0.1317 | 27.0 | 1485 | 0.5549 | 0.8906 |
0.1223 | 28.0 | 1540 | 0.4819 | 0.8926 |
0.0015 | 29.0 | 1595 | 0.6432 | 0.8711 |
0.0007 | 30.0 | 1650 | 0.6480 | 0.8926 |
0.0774 | 31.0 | 1705 | 0.7596 | 0.8926 |
0.1262 | 32.0 | 1760 | 0.7614 | 0.8809 |
0.034 | 33.0 | 1815 | 0.7392 | 0.8789 |
0.0021 | 34.0 | 1870 | 0.9068 | 0.8848 |
0.0003 | 35.0 | 1925 | 0.8724 | 0.8711 |
0.0001 | 36.0 | 1980 | 0.9483 | 0.8867 |
0.0127 | 37.0 | 2035 | 0.9638 | 0.8828 |
0.0001 | 38.0 | 2090 | 0.9105 | 0.8926 |
0.0001 | 39.0 | 2145 | 0.9231 | 0.8809 |
0.0008 | 40.0 | 2200 | 1.0224 | 0.8867 |
0.0001 | 41.0 | 2255 | 1.0666 | 0.8848 |
0.0002 | 42.0 | 2310 | 1.1028 | 0.8848 |
0.0 | 43.0 | 2365 | 0.9653 | 0.8906 |
0.0006 | 44.0 | 2420 | 1.1108 | 0.8848 |
0.0001 | 45.0 | 2475 | 1.2919 | 0.8730 |
0.0002 | 46.0 | 2530 | 1.0834 | 0.8926 |
0.0002 | 47.0 | 2585 | 1.1240 | 0.8887 |
0.0135 | 48.0 | 2640 | 1.1466 | 0.8887 |
0.0008 | 49.0 | 2695 | 1.2674 | 0.8691 |
0.0 | 50.0 | 2750 | 1.1311 | 0.8887 |
0.0086 | 51.0 | 2805 | 1.0957 | 0.8887 |
0.0 | 52.0 | 2860 | 1.1336 | 0.8789 |
0.0007 | 53.0 | 2915 | 1.1494 | 0.875 |
0.0002 | 54.0 | 2970 | 1.0790 | 0.8848 |
0.0002 | 55.0 | 3025 | 1.1489 | 0.8809 |
0.0 | 56.0 | 3080 | 1.1479 | 0.8867 |
0.0022 | 57.0 | 3135 | 1.2092 | 0.8848 |
0.2415 | 58.0 | 3190 | 1.2060 | 0.8848 |
0.7813 | 59.0 | 3245 | 1.3750 | 0.8613 |
0.0 | 60.0 | 3300 | 1.1202 | 0.875 |
0.0 | 61.0 | 3355 | 1.0502 | 0.8848 |
0.0 | 62.0 | 3410 | 1.3270 | 0.8730 |
0.0015 | 63.0 | 3465 | 1.0082 | 0.875 |
0.0002 | 64.0 | 3520 | 0.9724 | 0.8867 |
0.0014 | 65.0 | 3575 | 1.0862 | 0.8770 |
0.0002 | 66.0 | 3630 | 1.1366 | 0.8730 |
0.1868 | 67.0 | 3685 | 1.1838 | 0.8770 |
0.0004 | 68.0 | 3740 | 1.2073 | 0.875 |
0.0007 | 69.0 | 3795 | 1.1793 | 0.8770 |
0.0 | 70.0 | 3850 | 1.2262 | 0.8652 |
0.2838 | 71.0 | 3905 | 1.2415 | 0.875 |
0.0 | 72.0 | 3960 | 1.2346 | 0.8770 |
0.0041 | 73.0 | 4015 | 1.0830 | 0.8789 |
0.0055 | 74.0 | 4070 | 1.0731 | 0.8867 |
0.0 | 75.0 | 4125 | 1.4096 | 0.8652 |
0.0034 | 76.0 | 4180 | 1.1142 | 0.8711 |
0.0 | 77.0 | 4235 | 1.0250 | 0.8848 |
0.0002 | 78.0 | 4290 | 1.0700 | 0.8691 |
0.0009 | 79.0 | 4345 | 0.9032 | 0.8789 |
0.0001 | 80.0 | 4400 | 1.0556 | 0.8730 |
0.0001 | 81.0 | 4455 | 1.0740 | 0.8770 |
0.0002 | 82.0 | 4510 | 1.2571 | 0.8691 |
0.0 | 83.0 | 4565 | 1.2007 | 0.8809 |
0.0 | 84.0 | 4620 | 1.2515 | 0.875 |
0.0001 | 85.0 | 4675 | 1.0750 | 0.8828 |
0.0006 | 86.0 | 4730 | 1.3016 | 0.8730 |
0.0001 | 87.0 | 4785 | 1.2393 | 0.8809 |
0.0 | 88.0 | 4840 | 1.2232 | 0.8848 |
0.0003 | 89.0 | 4895 | 1.2187 | 0.8789 |
0.0 | 90.0 | 4950 | 1.2328 | 0.8730 |
0.0 | 91.0 | 5005 | 1.3026 | 0.8848 |
0.0 | 92.0 | 5060 | 1.3152 | 0.8770 |
0.0 | 93.0 | 5115 | 1.4069 | 0.875 |
0.0 | 94.0 | 5170 | 1.3988 | 0.8770 |
0.0 | 95.0 | 5225 | 1.3675 | 0.8594 |
0.0 | 96.0 | 5280 | 1.3366 | 0.8770 |
0.0003 | 97.0 | 5335 | 1.2140 | 0.8848 |
0.0 | 98.0 | 5390 | 1.3585 | 0.8711 |
0.0 | 99.0 | 5445 | 1.1665 | 0.8672 |
0.0 | 100.0 | 5500 | 1.0947 | 0.8809 |
0.0099 | 101.0 | 5555 | 1.2993 | 0.8730 |
0.0 | 102.0 | 5610 | 1.3578 | 0.8789 |
0.0 | 103.0 | 5665 | 1.3596 | 0.8867 |
0.0006 | 104.0 | 5720 | 1.3164 | 0.8848 |
0.0 | 105.0 | 5775 | 1.4100 | 0.8770 |
0.0 | 106.0 | 5830 | 1.3459 | 0.875 |
0.0005 | 107.0 | 5885 | 1.3783 | 0.8809 |
0.0 | 108.0 | 5940 | 1.2698 | 0.8770 |
0.0 | 109.0 | 5995 | 1.3933 | 0.8848 |
0.0 | 110.0 | 6050 | 1.3813 | 0.8809 |
0.0 | 111.0 | 6105 | 1.5747 | 0.875 |
0.0001 | 112.0 | 6160 | 1.3368 | 0.8867 |
0.0486 | 113.0 | 6215 | 1.3833 | 0.8828 |
0.1476 | 114.0 | 6270 | 1.4943 | 0.8828 |
0.0002 | 115.0 | 6325 | 1.4725 | 0.8789 |
0.0 | 116.0 | 6380 | 1.4614 | 0.875 |
0.0047 | 117.0 | 6435 | 1.6313 | 0.8770 |
0.0 | 118.0 | 6490 | 1.4459 | 0.8848 |
0.0026 | 119.0 | 6545 | 1.4150 | 0.8730 |
0.0 | 120.0 | 6600 | 1.6055 | 0.8555 |
0.0001 | 121.0 | 6655 | 1.3710 | 0.8789 |
0.3319 | 122.0 | 6710 | 1.3940 | 0.8867 |
0.0001 | 123.0 | 6765 | 1.2486 | 0.875 |
0.0002 | 124.0 | 6820 | 1.2946 | 0.8711 |
0.0 | 125.0 | 6875 | 1.2341 | 0.8711 |
0.0 | 126.0 | 6930 | 1.1418 | 0.8887 |
0.0 | 127.0 | 6985 | 1.0713 | 0.8926 |
0.0001 | 128.0 | 7040 | 1.1391 | 0.8613 |
0.1624 | 129.0 | 7095 | 1.2195 | 0.8789 |
0.0 | 130.0 | 7150 | 1.1576 | 0.8770 |
0.0001 | 131.0 | 7205 | 1.2939 | 0.8730 |
0.0 | 132.0 | 7260 | 1.1568 | 0.8867 |
0.0 | 133.0 | 7315 | 1.2117 | 0.8848 |
0.0 | 134.0 | 7370 | 1.1264 | 0.8926 |
0.0 | 135.0 | 7425 | 1.1675 | 0.8848 |
0.0 | 136.0 | 7480 | 1.1983 | 0.8828 |
0.0 | 137.0 | 7535 | 1.2666 | 0.8770 |
0.0001 | 138.0 | 7590 | 1.1287 | 0.8848 |
0.0 | 139.0 | 7645 | 1.0505 | 0.8848 |
0.0 | 140.0 | 7700 | 1.1770 | 0.8770 |
0.0 | 141.0 | 7755 | 1.1749 | 0.8906 |
0.0 | 142.0 | 7810 | 1.1311 | 0.8711 |
0.0 | 143.0 | 7865 | 1.1114 | 0.8652 |
0.0 | 144.0 | 7920 | 1.1419 | 0.8691 |
0.0 | 145.0 | 7975 | 1.1666 | 0.8691 |
0.0 | 146.0 | 8030 | 1.1712 | 0.8711 |
0.0 | 147.0 | 8085 | 1.1831 | 0.8711 |
0.0 | 148.0 | 8140 | 1.1799 | 0.8711 |
0.0 | 149.0 | 8195 | 1.1876 | 0.8711 |
0.0 | 150.0 | 8250 | 1.1884 | 0.8730 |
0.0 | 151.0 | 8305 | 1.2389 | 0.8730 |
0.0 | 152.0 | 8360 | 1.3622 | 0.875 |
0.0 | 153.0 | 8415 | 1.2604 | 0.8789 |
0.0 | 154.0 | 8470 | 1.3336 | 0.875 |
0.0 | 155.0 | 8525 | 1.3496 | 0.8809 |
0.0 | 156.0 | 8580 | 1.3882 | 0.8555 |
0.1815 | 157.0 | 8635 | 1.3679 | 0.8789 |
0.288 | 158.0 | 8690 | 1.3804 | 0.8691 |
0.0 | 159.0 | 8745 | 1.2980 | 0.8770 |
0.0 | 160.0 | 8800 | 1.4075 | 0.8789 |
0.0 | 161.0 | 8855 | 1.4231 | 0.8789 |
0.0 | 162.0 | 8910 | 1.4730 | 0.875 |
0.0019 | 163.0 | 8965 | 1.5861 | 0.8672 |
0.0 | 164.0 | 9020 | 1.4080 | 0.8809 |
0.0005 | 165.0 | 9075 | 1.5852 | 0.8711 |
0.0 | 166.0 | 9130 | 1.5370 | 0.875 |
0.0 | 167.0 | 9185 | 1.5288 | 0.875 |
0.0 | 168.0 | 9240 | 1.5516 | 0.8711 |
0.0 | 169.0 | 9295 | 1.5268 | 0.8730 |
0.0 | 170.0 | 9350 | 1.5061 | 0.8672 |
0.0 | 171.0 | 9405 | 1.4843 | 0.875 |
0.0 | 172.0 | 9460 | 1.5478 | 0.8633 |
0.0 | 173.0 | 9515 | 1.4753 | 0.8730 |
0.0 | 174.0 | 9570 | 1.6709 | 0.8730 |
0.0 | 175.0 | 9625 | 1.6663 | 0.875 |
0.0 | 176.0 | 9680 | 1.6980 | 0.8672 |
0.0 | 177.0 | 9735 | 1.5563 | 0.8770 |
0.0 | 178.0 | 9790 | 1.6146 | 0.875 |
0.0 | 179.0 | 9845 | 1.5599 | 0.8770 |
0.0 | 180.0 | 9900 | 1.5558 | 0.8789 |
0.0 | 181.0 | 9955 | 1.8485 | 0.8633 |
0.0 | 182.0 | 10010 | 1.7223 | 0.8789 |
0.0 | 183.0 | 10065 | 1.7169 | 0.875 |
0.0 | 184.0 | 10120 | 1.7125 | 0.8711 |
0.0 | 185.0 | 10175 | 1.7065 | 0.8711 |
0.0 | 186.0 | 10230 | 1.7748 | 0.8730 |
0.0 | 187.0 | 10285 | 1.6861 | 0.8789 |
0.0 | 188.0 | 10340 | 1.7325 | 0.8887 |
0.0 | 189.0 | 10395 | 1.7658 | 0.8828 |
0.0 | 190.0 | 10450 | 1.7649 | 0.8809 |
0.0 | 191.0 | 10505 | 1.7555 | 0.8828 |
0.0162 | 192.0 | 10560 | 1.8313 | 0.8691 |
0.0001 | 193.0 | 10615 | 1.8314 | 0.8574 |
0.0 | 194.0 | 10670 | 1.7706 | 0.8672 |
0.0 | 195.0 | 10725 | 1.6568 | 0.8730 |
0.0 | 196.0 | 10780 | 1.6568 | 0.8770 |
0.0 | 197.0 | 10835 | 1.6185 | 0.8848 |
0.0 | 198.0 | 10890 | 1.6133 | 0.8848 |
0.0 | 199.0 | 10945 | 1.6129 | 0.8848 |
0.0 | 200.0 | 11000 | 1.6121 | 0.8848 |
0.0 | 201.0 | 11055 | 1.6104 | 0.8828 |
0.0 | 202.0 | 11110 | 1.6075 | 0.8828 |
0.0 | 203.0 | 11165 | 1.6153 | 0.8867 |
0.0 | 204.0 | 11220 | 1.6339 | 0.8828 |
0.0 | 205.0 | 11275 | 1.6164 | 0.8867 |
0.0 | 206.0 | 11330 | 1.6114 | 0.8848 |
0.0 | 207.0 | 11385 | 1.6122 | 0.8867 |
0.0 | 208.0 | 11440 | 1.6079 | 0.8867 |
0.0 | 209.0 | 11495 | 1.6132 | 0.8867 |
0.0 | 210.0 | 11550 | 1.6141 | 0.8867 |
0.0 | 211.0 | 11605 | 1.6122 | 0.8867 |
0.0 | 212.0 | 11660 | 1.6070 | 0.8867 |
0.0 | 213.0 | 11715 | 1.6010 | 0.8867 |
0.0 | 214.0 | 11770 | 1.6562 | 0.8789 |
0.0005 | 215.0 | 11825 | 1.6297 | 0.8887 |
0.0 | 216.0 | 11880 | 1.6070 | 0.8809 |
0.0 | 217.0 | 11935 | 1.6750 | 0.8770 |
0.0 | 218.0 | 11990 | 1.6822 | 0.8730 |
0.0 | 219.0 | 12045 | 1.6819 | 0.8730 |
0.0 | 220.0 | 12100 | 1.6846 | 0.8770 |
0.0 | 221.0 | 12155 | 1.6827 | 0.875 |
0.0 | 222.0 | 12210 | 1.6822 | 0.875 |
0.0 | 223.0 | 12265 | 1.6780 | 0.8770 |
0.0 | 224.0 | 12320 | 1.6813 | 0.8770 |
0.0 | 225.0 | 12375 | 1.6770 | 0.8770 |
0.0 | 226.0 | 12430 | 1.6878 | 0.8789 |
0.0 | 227.0 | 12485 | 1.8890 | 0.8672 |
0.0 | 228.0 | 12540 | 1.6978 | 0.8828 |
0.0 | 229.0 | 12595 | 1.6945 | 0.8867 |
0.0 | 230.0 | 12650 | 1.6960 | 0.8848 |
0.0 | 231.0 | 12705 | 1.6972 | 0.8867 |
0.0 | 232.0 | 12760 | 1.6929 | 0.8867 |
0.0 | 233.0 | 12815 | 1.6911 | 0.8848 |
0.0 | 234.0 | 12870 | 1.6887 | 0.8867 |
0.0 | 235.0 | 12925 | 1.6999 | 0.8848 |
0.0 | 236.0 | 12980 | 1.7000 | 0.8848 |
0.0 | 237.0 | 13035 | 1.6877 | 0.8867 |
0.0 | 238.0 | 13090 | 1.6858 | 0.8867 |
0.0 | 239.0 | 13145 | 1.6859 | 0.8867 |
0.0 | 240.0 | 13200 | 1.6842 | 0.8867 |
0.0 | 241.0 | 13255 | 1.6829 | 0.8867 |
0.0 | 242.0 | 13310 | 1.6800 | 0.8867 |
0.0 | 243.0 | 13365 | 1.6870 | 0.8848 |
0.0 | 244.0 | 13420 | 1.6856 | 0.8848 |
0.0 | 245.0 | 13475 | 1.6831 | 0.8848 |
0.0 | 246.0 | 13530 | 1.6864 | 0.8828 |
0.0 | 247.0 | 13585 | 1.6896 | 0.8828 |
0.0 | 248.0 | 13640 | 1.6900 | 0.8828 |
0.0 | 249.0 | 13695 | 1.6906 | 0.8848 |
0.0 | 250.0 | 13750 | 1.6928 | 0.8828 |
0.0 | 251.0 | 13805 | 1.6943 | 0.8828 |
0.0 | 252.0 | 13860 | 1.6902 | 0.8789 |
0.0 | 253.0 | 13915 | 1.6638 | 0.8887 |
0.0 | 254.0 | 13970 | 1.6632 | 0.8867 |
0.0 | 255.0 | 14025 | 1.6627 | 0.8867 |
0.0 | 256.0 | 14080 | 1.6631 | 0.8867 |
0.0 | 257.0 | 14135 | 1.6626 | 0.8867 |
0.0 | 258.0 | 14190 | 1.6629 | 0.8867 |
0.0 | 259.0 | 14245 | 1.6617 | 0.8867 |
0.0 | 260.0 | 14300 | 1.6606 | 0.8867 |
0.0 | 261.0 | 14355 | 1.6598 | 0.8867 |
0.0 | 262.0 | 14410 | 1.6559 | 0.8867 |
0.0 | 263.0 | 14465 | 1.6564 | 0.8867 |
0.0 | 264.0 | 14520 | 1.6555 | 0.8867 |
0.0 | 265.0 | 14575 | 1.6588 | 0.8867 |
0.0 | 266.0 | 14630 | 1.6565 | 0.8867 |
0.0 | 267.0 | 14685 | 1.6558 | 0.8867 |
0.0 | 268.0 | 14740 | 1.6564 | 0.8848 |
0.0 | 269.0 | 14795 | 1.6578 | 0.8848 |
0.0 | 270.0 | 14850 | 1.6566 | 0.8848 |
0.0 | 271.0 | 14905 | 1.6560 | 0.8867 |
0.0 | 272.0 | 14960 | 1.6587 | 0.8848 |
0.0 | 273.0 | 15015 | 1.6575 | 0.8867 |
0.0 | 274.0 | 15070 | 1.6575 | 0.8848 |
0.0 | 275.0 | 15125 | 1.6570 | 0.8867 |
0.0 | 276.0 | 15180 | 1.6586 | 0.8848 |
0.0 | 277.0 | 15235 | 1.6572 | 0.8887 |
0.0 | 278.0 | 15290 | 1.6577 | 0.8848 |
0.0 | 279.0 | 15345 | 1.6570 | 0.8867 |
0.0 | 280.0 | 15400 | 1.6567 | 0.8887 |
0.0 | 281.0 | 15455 | 1.6548 | 0.8887 |
0.0 | 282.0 | 15510 | 1.6558 | 0.8867 |
0.0 | 283.0 | 15565 | 1.6505 | 0.8887 |
0.0 | 284.0 | 15620 | 1.6515 | 0.8887 |
0.0 | 285.0 | 15675 | 1.6513 | 0.8887 |
0.0 | 286.0 | 15730 | 1.6456 | 0.8887 |
0.0 | 287.0 | 15785 | 1.6471 | 0.8887 |
0.0 | 288.0 | 15840 | 1.6451 | 0.8887 |
0.0 | 289.0 | 15895 | 1.6468 | 0.8887 |
0.0 | 290.0 | 15950 | 1.6470 | 0.8887 |
0.0 | 291.0 | 16005 | 1.6448 | 0.8887 |
0.0 | 292.0 | 16060 | 1.6478 | 0.8887 |
0.0 | 293.0 | 16115 | 1.6475 | 0.8887 |
0.0 | 294.0 | 16170 | 1.6471 | 0.8887 |
0.0 | 295.0 | 16225 | 1.6476 | 0.8887 |
0.0 | 296.0 | 16280 | 1.6475 | 0.8887 |
0.0 | 297.0 | 16335 | 1.6460 | 0.8887 |
0.0 | 298.0 | 16390 | 1.6471 | 0.8887 |
0.0 | 299.0 | 16445 | 1.6469 | 0.8887 |
0.0 | 300.0 | 16500 | 1.6470 | 0.8887 |
Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.16.1
- Tokenizers 0.15.2
- Downloads last month
- 0
Model tree for wcvz/esm2_t130_150M-lora-classifier_2024-04-26_00-25-40
Base model
facebook/esm2_t30_150M_UR50D