Edit model card

BenchmarkEngineering-7B-slerp

This model was merged with the intent of producing excellent Open-LLM benchmarking results by smashing two of the highest performant models in their class together

BenchmarkEngineering-7B-slerp is a merge of the following models using LazyMergekit:

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 76.40
AI2 Reasoning Challenge (25-Shot) 74.15
HellaSwag (10-Shot) 89.09
MMLU (5-Shot) 64.69
TruthfulQA (0-shot) 75.93
Winogrande (5-shot) 85.32
GSM8k (5-shot) 69.22

🧩 Configuration

slices:
  - sources:
      - model: paulml/OmniBeagleSquaredMBX-v3-7B
        layer_range: [0, 32]
      - model: automerger/YamshadowExperiment28-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: paulml/OmniBeagleSquaredMBX-v3-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "weezywitasneezy/BenchmarkEngineering-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
16
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for weezywitasneezy/BenchmarkEngineering-7B-slerp

Evaluation results