Recommended
Collection
These models have been tested successfully and perform well for their intended purposes
β’
3 items
β’
Updated
OxytocinErosEngineeringF1-7B-slerp is a merge of the following models using LazyMergekit:
Thanks to MraderMarcher for providing GGUF quants-> mradermacher/OxytocinErosEngineeringF1-7B-slerp-GGUF
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 69.22 |
AI2 Reasoning Challenge (25-Shot) | 67.15 |
HellaSwag (10-Shot) | 86 |
MMLU (5-Shot) | 64.73 |
TruthfulQA (0-shot) | 54.54 |
Winogrande (5-shot) | 81.14 |
GSM8k (5-shot) | 61.79 |
slices:
- sources:
- model: ChaoticNeutrals/Eris_Remix_7B
layer_range: [0, 32]
- model: Virt-io/Erebus-Holodeck-7B
layer_range: [0, 32]
merge_method: slerp
base_model: ChaoticNeutrals/Eris_Remix_7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])