welsachy's picture
End of training
7bf2a69 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-depression
    results: []

distilbert-base-uncased-finetuned-depression

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6721
  • Precision: 0.9018
  • Recall: 0.8881
  • F1: 0.8946
  • Accuracy: 0.9168

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 469 0.3914 0.9136 0.7542 0.8087 0.8678
0.5449 2.0 938 0.3944 0.8652 0.8677 0.8644 0.8977
0.2679 3.0 1407 0.4355 0.8717 0.8713 0.8703 0.9009
0.1516 4.0 1876 0.4509 0.8757 0.8809 0.8779 0.9083
0.0989 5.0 2345 0.4762 0.8861 0.8846 0.8854 0.9094
0.0666 6.0 2814 0.4829 0.8878 0.8890 0.8883 0.9126
0.0563 7.0 3283 0.5768 0.8918 0.8866 0.8885 0.9115
0.0349 8.0 3752 0.6874 0.8898 0.8644 0.8758 0.8987
0.0444 9.0 4221 0.6256 0.8804 0.8822 0.8790 0.9019
0.0301 10.0 4690 0.6354 0.8897 0.8750 0.8814 0.9030
0.0318 11.0 5159 0.7172 0.8894 0.8682 0.8770 0.9009
0.0222 12.0 5628 0.6906 0.9001 0.8700 0.8834 0.9019
0.0243 13.0 6097 0.7263 0.8898 0.8732 0.8800 0.9019
0.0172 14.0 6566 0.6936 0.8945 0.8766 0.8846 0.9072
0.0204 15.0 7035 0.7428 0.9081 0.8730 0.8889 0.9051
0.0162 16.0 7504 0.7202 0.8966 0.8748 0.8846 0.9062
0.0162 17.0 7973 0.6721 0.9018 0.8881 0.8946 0.9168
0.0172 18.0 8442 0.7664 0.9037 0.8706 0.8854 0.9030
0.0156 19.0 8911 0.7166 0.8985 0.8784 0.8876 0.9094
0.0158 20.0 9380 0.7327 0.8966 0.8748 0.8846 0.9062

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1