SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-mpnet-base-dot-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/multi-qa-mpnet-base-dot-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Dot Product
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Onde é mencionado oficialmente o NDE do curso de Ciência Da Computação, conforme a Portaria nº ?',
'**3.4 Núcleo Docente Estruturante do Curso**<br><br>O NDE do curso de Ciência Da Computação, conforme designado na Portaria nº <br><br>Projeto Pedagógico do Curso de Ciência Da Computação,*Campus*Chapecó. <br><br>17 ',
'**IDENTIFICAÇÃO INSTITUCIONAL**<br><br>A Universidade Federal da Fronteira Sul foi criada pela Lei Nº 12.029, de 15 de <br><br>35 setembro de 2009. Tem abrangência interestadual com sede na cidade catarinense de <br><br>Chapecó, três*campi*no Rio Grande do Sul – Cerro Largo, Erechim e Passo Fundo – e dois <br><br>*campi*no Paraná – Laranjeiras do Sul e Realeza. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.625 |
cosine_accuracy@3 | 0.8015 |
cosine_accuracy@5 | 0.864 |
cosine_accuracy@10 | 0.9228 |
cosine_precision@1 | 0.625 |
cosine_precision@3 | 0.2672 |
cosine_precision@5 | 0.1728 |
cosine_precision@10 | 0.0923 |
cosine_recall@1 | 0.625 |
cosine_recall@3 | 0.8015 |
cosine_recall@5 | 0.864 |
cosine_recall@10 | 0.9228 |
cosine_ndcg@10 | 0.7746 |
cosine_mrr@10 | 0.7271 |
cosine_map@100 | 0.7301 |
dot_accuracy@1 | 0.6275 |
dot_accuracy@3 | 0.799 |
dot_accuracy@5 | 0.8701 |
dot_accuracy@10 | 0.9203 |
dot_precision@1 | 0.6275 |
dot_precision@3 | 0.2663 |
dot_precision@5 | 0.174 |
dot_precision@10 | 0.092 |
dot_recall@1 | 0.6275 |
dot_recall@3 | 0.799 |
dot_recall@5 | 0.8701 |
dot_recall@10 | 0.9203 |
dot_ndcg@10 | 0.774 |
dot_mrr@10 | 0.7269 |
dot_map@100 | 0.7302 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,012 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 14 tokens
- mean: 40.7 tokens
- max: 123 tokens
- min: 9 tokens
- mean: 272.17 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 Em quantos estados brasileiros a Universidade Federal da Fronteira Sul está localizada?
IDENTIFICAÇÃO INSTITUCIONAL
A Universidade Federal da Fronteira Sul foi criada pela Lei Nº 12.029, de 15 de
35 setembro de 2009. Tem abrangência interestadual com sede na cidade catarinense de
Chapecó, trêscampino Rio Grande do Sul – Cerro Largo, Erechim e Passo Fundo – e dois
campino Paraná – Laranjeiras do Sul e Realeza.Qual é a cidade sede da universidade?
IDENTIFICAÇÃO INSTITUCIONAL
A Universidade Federal da Fronteira Sul foi criada pela Lei Nº 12.029, de 15 de
35 setembro de 2009. Tem abrangência interestadual com sede na cidade catarinense de
Chapecó, trêscampino Rio Grande do Sul – Cerro Largo, Erechim e Passo Fundo – e dois
campino Paraná – Laranjeiras do Sul e Realeza.Quantos campi possui a universidade em cada um dos estados onde está presente?
IDENTIFICAÇÃO INSTITUCIONAL
A Universidade Federal da Fronteira Sul foi criada pela Lei Nº 12.029, de 15 de
35 setembro de 2009. Tem abrangência interestadual com sede na cidade catarinense de
Chapecó, trêscampino Rio Grande do Sul – Cerro Largo, Erechim e Passo Fundo – e dois
campino Paraná – Laranjeiras do Sul e Realeza. - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 30multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 30max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | cosine_map@100 |
---|---|---|---|
0.9901 | 200 | - | 0.6360 |
1.0 | 202 | - | 0.6399 |
1.9802 | 400 | - | 0.6686 |
2.0 | 404 | - | 0.6670 |
2.4752 | 500 | 2.6222 | - |
2.9703 | 600 | - | 0.6943 |
3.0 | 606 | - | 0.6864 |
3.9604 | 800 | - | 0.7016 |
4.0 | 808 | - | 0.7064 |
4.9505 | 1000 | 0.5981 | 0.7301 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 47
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for winderfeld/cc-uffs-ppc-ft-test-multiqa
Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.625
- Cosine Accuracy@3 on Unknownself-reported0.801
- Cosine Accuracy@5 on Unknownself-reported0.864
- Cosine Accuracy@10 on Unknownself-reported0.923
- Cosine Precision@1 on Unknownself-reported0.625
- Cosine Precision@3 on Unknownself-reported0.267
- Cosine Precision@5 on Unknownself-reported0.173
- Cosine Precision@10 on Unknownself-reported0.092
- Cosine Recall@1 on Unknownself-reported0.625
- Cosine Recall@3 on Unknownself-reported0.801