finetuned-bert-mrpc / README.md
wiselinjayajos's picture
Update README.md
76ef7cd
|
raw
history blame
1.88 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: finetuned-bert-mrpc
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8455882352941176
          - name: F1
            type: f1
            value: 0.8908145580589255

finetuned-bert-mrpc

This model is a fine-tuned version of bert-base-cased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4755
  • Accuracy: 0.8456
  • F1: 0.8908

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Trained on my local laptop and the training time took 3 hours.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5331 1.0 230 0.3837 0.8505 0.8943
0.3023 2.0 460 0.3934 0.8505 0.8954
0.1472 3.0 690 0.4755 0.8456 0.8908

Framework versions

  • Transformers 4.20.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1