only for FFmpeg
Direct Use
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
model_name = "meta-llama/Llama-2-13b-chat-hf"
adapters_name = 'wj2003/Pongo-13B'
model = AutoModelForCausalLM.from_pretrained(
model_name,
load_in_4bit=True,
torch_dtype=torch.bfloat16,
device_map="auto",
max_memory={i: '24000MB' for i in range(torch.cuda.device_count())},
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
),
)
model = PeftModel.from_pretrained(model, adapters_name)
tokenizer = AutoTokenizer.from_pretrained(adapters_name)
prompt = "find potential security issues in the following code. If it has vulnerability, " \
"output: Vulnerabilities " \
"Detected: type of vulnerability. otherwise output<no vulnerability detected>.Here is the complete code: "
# Provide your code
code=""
formatted_prompt = (
f"{prompt + code}"
)
inputs = tokenizer(formatted_prompt,return_tensors="pt").to("cuda:0")
outputs = model.generate(inputs=inputs.input_ids, max_new_tokens=1024)