ParroT-Hint-7b-lora
The LoRA version of ParroT-Hint-7b based on llama-7b.
Inference
Inference based on the LoRA weights looks as below. You may refer to the GitHub project for more details.
# Translation
python3 inference_lora.py --model-name-or-path <your_proj_path>/llama-7b \
--lora-weights <your_proj_path>/ParroT-Hint-7b-lora/adapter_model \
-lp 'zh-en' \
-t 0.1 \
-sa 'beam' \
-ins test/instruct_inf.txt \
-i test/test_rand_50.zh.txt \
-o test/test_rand_50.zh-en.none-hint.txt
# Text generation
python3 inference_lora.py --model-name-or-path <your_proj_path>/llama-7b \
--lora-weights <your_proj_path>/ParroT-Hint-7b-lora/adapter_model \
-t 0.7 \
-sa 'sample' \
-i test/test_case.txt \
-o test/test_case.general-task.txt
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 1
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1.58
Framework versions
- Transformers 4.28.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.11.0
- Tokenizers 0.13.2