|
--- |
|
language: |
|
- ru |
|
tags: |
|
- SER |
|
- speech |
|
- audio |
|
- russian |
|
--- |
|
# HuBERT fine-tuned on DUSHA dataset for speech emotion recognition in russian language |
|
|
|
The pre-trained model is this one - [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) |
|
|
|
The DUSHA dataset used can be found [here](https://github.com/salute-developers/golos/tree/master/dusha#dataset-structure) |
|
|
|
# Fine-tuning |
|
|
|
Fine-tuned in Google Colab using Pro account with A100 GPU |
|
|
|
Freezed all layers exept projector, classifier and all 24 HubertEncoderLayerStableLayerNorm layers |
|
|
|
Used half of the train dataset |
|
|
|
# Training parameters |
|
|
|
- 2 epochs |
|
- train batch size = 8 |
|
- eval batch size = 8 |
|
- gradient accumulation steps = 4 |
|
- learning rate = 5e-5 without warm up and decay |
|
|
|
# Metrics |
|
|
|
Achieved |
|
- accuracy = 0.86 |
|
- balanced = 0.76 |
|
- macro f1 score = 0.81 |
|
on test set, improving accucary and f1 score compared to dataset baseline |
|
|
|
# Usage |
|
|
|
```python |
|
from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor |
|
import torchaudio |
|
import torch |
|
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-large-ls960-ft") |
|
model = HubertForSequenceClassification.from_pretrained("xbgoose/hubert-speech-emotion-recognition-russian-dusha-finetuned") |
|
num2emotion = {0: 'neutral', 1: 'angry', 2: 'positive', 3: 'sad', 4: 'other'} |
|
|
|
filepath = "path/to/audio.wav" |
|
|
|
waveform, sample_rate = torchaudio.load(filepath, normalize=True) |
|
transform = torchaudio.transforms.Resample(sample_rate, 16000) |
|
waveform = transform(waveform) |
|
|
|
inputs = feature_extractor( |
|
waveform, |
|
sampling_rate=feature_extractor.sampling_rate, |
|
return_tensors="pt", |
|
padding=True, |
|
max_length=16000 * 10, |
|
truncation=True |
|
) |
|
|
|
logits = model(inputs['input_values'][0]).logits |
|
predictions = torch.argmax(logits, dim=-1) |
|
predicted_emotion = num2emotion[predictions.numpy()[0]] |
|
print(predicted_emotion) |
|
``` |