metadata
library_name: transformers
license: apache-2.0
base_model: bookbot/distil-ast-audioset
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distil-ast-audioset-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.88
distil-ast-audioset-finetuned-gtzan
This model is a fine-tuned version of bookbot/distil-ast-audioset on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.3707
- Accuracy: 0.88
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7768 | 0.9912 | 28 | 0.4780 | 0.85 |
0.4124 | 1.9823 | 56 | 0.4763 | 0.87 |
0.2095 | 2.9735 | 84 | 0.4231 | 0.89 |
0.0874 | 4.0 | 113 | 0.4250 | 0.87 |
0.0406 | 4.9912 | 141 | 0.4068 | 0.87 |
0.0205 | 5.9823 | 169 | 0.3918 | 0.88 |
0.0082 | 6.9735 | 197 | 0.3604 | 0.89 |
0.0082 | 8.0 | 226 | 0.3804 | 0.89 |
0.0059 | 8.9912 | 254 | 0.3821 | 0.87 |
0.004 | 9.9115 | 280 | 0.3707 | 0.88 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1
- Datasets 3.0.0
- Tokenizers 0.19.1