Edit model card
YAML Metadata Warning: The pipeline tag "conversational" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, any-to-any, other

Generic badge

Model

Qwen-7B-qlora-moss-003-sft is fine-tuned from Qwen-7B with moss-003-sft dataset by XTuner.

Quickstart

Usage with HuggingFace libraries

import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, StoppingCriteria
from transformers.generation import GenerationConfig

class StopWordStoppingCriteria(StoppingCriteria):
    def __init__(self, tokenizer, stop_word):
        self.tokenizer = tokenizer
        self.stop_word = stop_word
        self.length = len(self.stop_word)
    def __call__(self, input_ids, *args, **kwargs) -> bool:
        cur_text = self.tokenizer.decode(input_ids[0])
        cur_text = cur_text.replace('\r', '').replace('\n', '')
        return cur_text[-self.length:] == self.stop_word

tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen-7B', trust_remote_code=True)
quantization_config = BitsAndBytesConfig(load_in_4bit=True, load_in_8bit=False, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4')
model = AutoModelForCausalLM.from_pretrained('Qwen/Qwen-7B', quantization_config=quantization_config, device_map='auto', trust_remote_code=True).eval()
model = PeftModel.from_pretrained(model, 'xtuner/Qwen-7B-qlora-moss-003-sft')
gen_config = GenerationConfig(max_new_tokens=512, do_sample=True, temperature=0.1, top_p=0.75, top_k=40)

# Note: In this example, we disable the use of plugins because the API depends on additional implementations.
# If you want to experience plugins, please refer to XTuner CLI!
prompt_template = (
    'You are an AI assistant whose name is Qwen.\n'
    'Capabilities and tools that Qwen can possess.\n'
    '- Inner thoughts: disabled.\n'
    '- Web search: disabled.\n'
    '- Calculator: disabled.\n'
    '- Equation solver: disabled.\n'
    '- Text-to-image: disabled.\n'
    '- Image edition: disabled.\n'
    '- Text-to-speech: disabled.\n'
    '<|Human|>: {input}<eoh>\n'
    '<|Inner Thoughts|>: None<eot>\n'
    '<|Commands|>: None<eoc>\n'
    '<|Results|>: None<eor>\n')

text = '请给我介绍五个上海的景点'
inputs = tokenizer(prompt_template.format(input=text), return_tensors='pt')
inputs = inputs.to(model.device)
pred = model.generate(**inputs, generation_config=gen_config, stopping_criteria=[StopWordStoppingCriteria(tokenizer, '<eom>')])
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
"""
好的,以下是五个上海的景点介绍:
1. 上海博物馆:上海博物馆是中国最大的综合性博物馆之一,收藏了大量的历史文物和艺术品,包括青铜器、陶瓷、书画、玉器等。
2. 上海城隍庙:上海城隍庙是上海最古老的庙宇之一,建于明朝,是上海的标志性建筑之一。庙内有各种神像和文物,是了解上海历史文化的好去处。
3. 上海科技馆:上海科技馆是一座集科技、文化、教育为一体的综合性博物馆,展示了各种科技展品和互动体验项目,适合全家人一起参观。
4. 上海东方明珠塔:上海东方明珠塔是上海的标志性建筑之一,高468米。游客可以乘坐高速电梯到达观景台,欣赏上海的美景。
5. 上海迪士尼乐园:上海迪士尼乐园是中国第一个迪士尼主题公园,拥有各种游乐设施和表演节目,适合全家人一起游玩。
"""

Usage with XTuner CLI

Installation

pip install -U xtuner

Chat

export SERPER_API_KEY="xxx"  # Please get the key from https://serper.dev to support google search!
xtuner chat Qwen/Qwen-7B --adapter xtuner/Qwen-7B-qlora-moss-003-sft --bot-name Qwen --prompt-template moss_sft --system-template moss_sft --with-plugins calculate solve search

Fine-tune

Use the following command to quickly reproduce the fine-tuning results.

NPROC_PER_NODE=8 xtuner train qwen_7b_qlora_moss_sft_all_e2_gpu8
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train xtuner/Qwen-7B-qlora-moss-003-sft

Collections including xtuner/Qwen-7B-qlora-moss-003-sft