metadata
datasets:
- Lin-Chen/ShareGPT4V
pipeline_tag: image-to-text
library_name: transformers
Model
llava-phi-3-mini is a LLaVA model fine-tuned from microsoft/Phi-3-mini-4k-instruct and CLIP-ViT-Large-patch14-336 with ShareGPT4V-PT and InternVL-SFT by XTuner.
Note: This model is in HuggingFace LLaVA format. The models in xtuner LLaVA format and official LLaVA format can be found on xtuner/llava-phi-3-mini-xtuner and xtuner/llava-phi-3-mini.
Details
Model | Visual Encoder | Projector | Resolution | Pretraining Strategy | Fine-tuning Strategy | Pretrain Dataset | Fine-tune Dataset | Pretrain Epoch | Fine-tune Epoch |
---|---|---|---|---|---|---|---|---|---|
LLaVA-v1.5-7B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, Frozen ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) | 1 | 1 |
LLaVA-Llama-3-8B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) | 1 | 1 |
LLaVA-Llama-3-8B-v1.1 | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | ShareGPT4V-PT (1246K) | InternVL-SFT (1268K) | 1 | 1 |
LLaVA-Phi-3-mini | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, Full ViT | ShareGPT4V-PT (1246K) | InternVL-SFT (1268K) | 1 | 2 |
Results
Model | MMBench Test (EN) | MMMU Val | SEED-IMG | AI2D Test | ScienceQA Test | HallusionBench aAcc | POPE | GQA | TextVQA | MME | MMStar |
---|---|---|---|---|---|---|---|---|---|---|---|
LLaVA-v1.5-7B | 66.5 | 35.3 | 60.5 | 54.8 | 70.4 | 44.9 | 85.9 | 62.0 | 58.2 | 1511/348 | 30.3 |
LLaVA-Llama-3-8B | 68.9 | 36.8 | 69.8 | 60.9 | 73.3 | 47.3 | 87.2 | 63.5 | 58.0 | 1506/295 | 38.2 |
LLaVA-Llama-3-8B-v1.1 | 72.3 | 37.1 | 70.1 | 70.0 | 72.9 | 47.7 | 86.4 | 62.6 | 59.0 | 1469/349 | 45.1 |
LLaVA-Phi-3-mini | 69.2 | 41.4 | 70.0 | 69.3 | 73.7 | 49.8 | 87.3 | 61.5 | 57.8 | 1477/313 | 43.7 |
Quickstart
Chat with pipeline
from transformers import pipeline
from PIL import Image
import requests
model_id = "xtuner/llava-phi-3-mini-hf"
pipe = pipeline("image-to-text", model=model_id, device=0)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "<|user|>\n<image>\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud<|end|>\n<|assistant|>\n"
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
print(outputs)
>>> [{'generated_text': '\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud (1) lava'}]
Chat with pure transformers
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
model_id = "xtuner/llava-phi-3-mini-hf"
prompt = "<|user|>\n<image>\nWhat are these?<|end|>\n<|assistant|>\n"
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = AutoProcessor.from_pretrained(model_id)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
>>> What are these? These are two cats sleeping on a pink couch.
Reproduction
Please refer to docs.
Citation
@misc{2023xtuner,
title={XTuner: A Toolkit for Efficiently Fine-tuning LLM},
author={XTuner Contributors},
howpublished = {\url{https://github.com/InternLM/xtuner}},
year={2023}
}