llama2-13b-dpo-lora-20231205-32
This model is a fine-tuned version of meta-llama/Llama-2-13b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6891
- Rewards/chosen: 0.0224
- Rewards/rejected: 0.0145
- Rewards/accuracies: 0.5675
- Rewards/margins: 0.0079
- Logps/rejected: -245.1621
- Logps/chosen: -309.3195
- Logits/rejected: -1.2044
- Logits/chosen: -1.4437
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 32
- total_train_batch_size: 512
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.691 | 1.0 | 121 | 0.6911 | 0.0078 | 0.0020 | 0.5040 | 0.0058 | -245.2879 | -309.4661 | -1.2040 | -1.4432 |
0.6895 | 2.0 | 242 | 0.6903 | 0.0202 | 0.0107 | 0.5317 | 0.0095 | -245.2007 | -309.3419 | -1.2045 | -1.4435 |
0.6889 | 3.0 | 363 | 0.6891 | 0.0224 | 0.0145 | 0.5675 | 0.0079 | -245.1621 | -309.3195 | -1.2044 | -1.4437 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for xz-huggingface-0/llama2-13b-dpo-lora-20231205-32
Base model
meta-llama/Llama-2-13b-hf