Hebrew-Mistral-7B / README.md
yam-peleg's picture
Update README.md
3d32134 verified
|
raw
history blame
2.45 kB
metadata
license: apache-2.0
language:
  - en
  - he
library_name: transformers

Hebrew-Mistral-7B

Hebrew-Mistral-7B is an open-source Large Language Model (LLM) pretrained in hebrew and english pretrained with 7B billion parameters, based on Mistral-7B-v1.0 from Mistral.

It has an extended hebrew tokenizer with 64,000 tokens and is continuesly pretrained from Mistral-7B on tokens in both English and Hebrew.

The resulting model is a powerful general-purpose language model suitable for a wide range of natural language processing tasks, with a focus on Hebrew language understanding and generation.

Usage

Below are some code snippets on how to get quickly started with running the model.

First make sure to pip install -U transformers, then copy the snippet from the section that is relevant for your usecase.

Running on CPU

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mistral-7B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mistral-7B")

input_text = "ืฉืœื•ื! ืžื” ืฉืœื•ืžืš ื”ื™ื•ื?"
input_ids = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

Running on GPU

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mistral-7B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mistral-7B", device_map="auto")

input_text = "ืฉืœื•ื! ืžื” ืฉืœื•ืžืš ื”ื™ื•ื?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

Running with 4-Bit precision

from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mistral-7B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mistral-7B", quantization_config = BitsAndBytesConfig(load_in_4bit=True))

input_text = "ืฉืœื•ื! ืžื” ืฉืœื•ืžืš ื”ื™ื•ื?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0])

Notice

Hebrew-Mistral-7B is a pretrained base model and therefore does not have any moderation mechanisms.

Authors

  • Trained by Yam Peleg.
  • In collaboration with Jonathan Rouach and Arjeo, inc.