metadata
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 'Colloqujdi Gio: Lodovico Vives latini, e volgari/Colloqui'
- text: >-
Ioannis Lodovici Vivis Von Underweÿsung ayner christlichen Frauwen drey
Bücher ...erklärt unnd verteütscht. Durch Christophorum Brunonem .../Von
Underweysung ayner christlichen Frauwen drey Bücher
- text: >-
Absolvtissimae in Hebraicam lingvam institvtiones accvratissime in vsvm
studiosæ juuentutis conscriptæ ...Avtore Iohanne Isaaco Leuita
Germano/Absolutissimae in Hebraicam linguam institutiones accuratissime in
usum studiosæ juventutis conscriptæ ... Autore Iohanne Isaaco Levita
Germano
- text: >-
In tertiam partem D. Thomæ Aqvinatis commentaria Ioannis Wiggers ... a
quæstione I. vsque ad quæstionem XXVI. de verbo incarnatoIn tertiam partem
D. Thomae Aquinatis commentaria Ioannis Wiggers ... a quaestione I. usque
ad quaestionem XXVI. de verbo incarnato
- text: >-
Tabvla in grammaticen Hebræam,authore Nicolao Clenardo. A Iohanne
Quinquarboreo Aurilacensi à mendis quibus scatebat repurgata, &
annotationibus illustrata./Tabula in grammaticen Hebraeam, authore Nicolao
Clenardo. A Johanne Quinquarboreo Aurilacensi à mendis quibus scatebat
repurgata, & annotationibus illustrata
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.735
name: Accuracy
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
no |
|
yes |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.735 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("yannryanhelsinki/setfit-language-guess")
# Run inference
preds = model("Colloqujdi Gio: Lodovico Vives latini, e volgari/Colloqui")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 5 | 29.2759 | 92 |
Label | Training Sample Count |
---|---|
no | 44 |
yes | 72 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0034 | 1 | 0.2242 | - |
0.1724 | 50 | 0.1951 | - |
0.3448 | 100 | 0.0342 | - |
0.5172 | 150 | 0.0008 | - |
0.6897 | 200 | 0.0006 | - |
0.8621 | 250 | 0.0003 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}