yannryanhelsinki's picture
Add SetFit model
6f8a097 verified
metadata
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
  - accuracy
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: 'Colloqujdi Gio: Lodovico Vives latini, e volgari/Colloqui'
  - text: >-
      Ioannis Lodovici Vivis Von Underweÿsung ayner christlichen Frauwen drey
      Bücher ...erklärt unnd verteütscht. Durch Christophorum Brunonem .../Von
      Underweysung ayner christlichen Frauwen drey Bücher
  - text: >-
      Absolvtissimae in Hebraicam lingvam institvtiones accvratissime in vsvm
      studiosæ juuentutis conscriptæ ...Avtore Iohanne Isaaco Leuita
      Germano/Absolutissimae in Hebraicam linguam institutiones accuratissime in
      usum studiosæ juventutis conscriptæ ...  Autore Iohanne Isaaco Levita
      Germano
  - text: >-
      In tertiam partem D. Thomæ Aqvinatis commentaria Ioannis Wiggers ... a
      quæstione I. vsque ad quæstionem XXVI. de verbo incarnatoIn tertiam partem
      D. Thomae Aquinatis commentaria Ioannis Wiggers ... a quaestione I. usque
      ad quaestionem XXVI. de verbo incarnato
  - text: >-
      Tabvla in grammaticen Hebræam,authore Nicolao Clenardo. A Iohanne
      Quinquarboreo Aurilacensi à mendis quibus scatebat repurgata, &
      annotationibus illustrata./Tabula in grammaticen Hebraeam, authore Nicolao
      Clenardo. A Johanne Quinquarboreo Aurilacensi à mendis quibus scatebat
      repurgata, & annotationibus illustrata
inference: true
model-index:
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.735
            name: Accuracy

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
no
  • 'Exomologesis sive Modus confitendi,per Erasmum Roterodamũ .../Exomologesis sive modus confitendi per Erasmum Roterodamum'
  • 'Aen-wysinge van de macht en de eer die aen Jesus-Christus toe-komt. En van de eerbiedinghe die-men schuldigh is aen sijn aldersuyverste moeder Maria, en andere heyligen.'
  • 'Staatkundige vermaningen en voorbeelden, die de deughden en zonden der vorsten betreffen.Nieuwelijks door I.H. Glazemaker vertaalt.'
yes
  • 'Reclamations des trois états du duché de Brabant sur les atteintes portées a leurs droits et loix constitutionnelles au nom de S.M. Joseph II.'
  • 'Brief van het Magistraet van Brugge van date 16 February 1788 aen de ordinaire Gedeputeerde der Staeten van Vlaenderen tenderende om staets gewyze te doen naedere Representatie tegen de opregtinge van een Seminarie Generael tot Loven ...'
  • "Bericht voor d'Universiteyt &c. van Leuven, over de wijtloopige memorie, en andere schriften en documenten daer by, overgegeven aen haer Ho. Mog. door de vicarissen van Doornik"

Evaluation

Metrics

Label Accuracy
all 0.735

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("yannryanhelsinki/setfit-language-guess")
# Run inference
preds = model("Colloqujdi Gio: Lodovico Vives latini, e volgari/Colloqui")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 5 29.2759 92
Label Training Sample Count
no 44
yes 72

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0034 1 0.2242 -
0.1724 50 0.1951 -
0.3448 100 0.0342 -
0.5172 150 0.0008 -
0.6897 200 0.0006 -
0.8621 250 0.0003 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.3.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}