CosmoSpeak / README.md
yd915's picture
Update README.md
b094090 verified
---
tags:
- autotrain
- text-generation-inference
- text-generation
- peft
library_name: transformers
base_model: HuggingFaceTB/SmolLM-135M
widget:
- messages:
- role: user
content: What is your favorite condiment?
license: other
---
# CosmoSpeak
<center>
<img src="https://i.postimg.cc/mrJvQpkL/speak.png" alt="CosmoSpeak" width="1216" height="832">
</center>
## Model Summary
CosmoSpeak is a state-of-the-art chatbot that specializes in the domain of Astronautics / Space Mission Engineering. It covers topics such as
.Flight control team
.Flight Dynamics
.Procedure Preparation and Validation
.Mission Planning
.Extravehicular Activities (EVAs)
.Collision Avoidance Manoeuvres
.Mission Termination and De-Orbit Strategies
CosmoSpeak is a fine-tuned SmolLM-135M trained with Astrochat dataset (https://huggingface.co/datasets/patrickfleith/AstroChat)
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "https://huggingface.co/yd915/CosmoSpeak"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
```