|
--- |
|
|
|
|
|
{} |
|
--- |
|
# Kosmos-2: Grounding Multimodal Large Language Models to the World |
|
|
|
<a href="https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/annotated_snowman.jpg" target="_blank"><figure><img src="https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/annotated_snowman.jpg" width="384"><figcaption><b>[An image of a snowman warming himself by a fire.]</b></figcaption></figure></a> |
|
|
|
|
|
This Hub repository contains a HuggingFace's `transformers` implementation of [the original Kosmos-2 model](https://github.com/microsoft/unilm/tree/master/kosmos-2) from Microsoft. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
import requests |
|
|
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForVision2Seq |
|
|
|
|
|
model = AutoModelForVision2Seq.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True) |
|
processor = AutoProcessor.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True) |
|
|
|
prompt = "<grounding>An image of" |
|
|
|
url = "https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/snowman.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
# The original Kosmos-2 demo saves the image first then reload it. For some images, this will give slightly different image input and change the generation outputs. |
|
# Uncomment the following 2 lines if you want to match the original demo's outputs. |
|
# (One example is the `two_dogs.jpg` from the demo) |
|
# image.save("new_image.jpg") |
|
# image = Image.open("new_image.jpg") |
|
|
|
inputs = processor(text=prompt, images=image, return_tensors="pt") |
|
|
|
generated_ids = model.generate( |
|
pixel_values=inputs["pixel_values"], |
|
input_ids=inputs["input_ids"][:, :-1], |
|
attention_mask=inputs["attention_mask"][:, :-1], |
|
img_features=None, |
|
img_attn_mask=inputs["img_attn_mask"][:, :-1], |
|
use_cache=True, |
|
max_new_tokens=64, |
|
) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
# Specify `cleanup_and_extract=False` in order to see the raw model generation. |
|
processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False) |
|
|
|
print(processed_text) |
|
# `<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>.` |
|
|
|
# By default, the generated text is cleanup and the entities are extracted. |
|
processed_text, entities = processor.post_process_generation(generated_text) |
|
|
|
print(processed_text) |
|
# `An image of a snowman warming himself by a fire.` |
|
|
|
print(entities) |
|
# `[('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]` |
|
``` |
|
|
|
## Draw the bounding bboxes of the entities on the image |
|
|
|
Once you have the `entities`, you can use the following helper function to draw their bounding bboxes on the image: |
|
|
|
```python |
|
import cv2 |
|
import numpy as np |
|
import os |
|
import requests |
|
import torch |
|
import torchvision.transforms as T |
|
|
|
from PIL import Image |
|
|
|
|
|
def is_overlapping(rect1, rect2): |
|
x1, y1, x2, y2 = rect1 |
|
x3, y3, x4, y4 = rect2 |
|
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4) |
|
|
|
|
|
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None): |
|
"""_summary_ |
|
Args: |
|
image (_type_): image or image path |
|
collect_entity_location (_type_): _description_ |
|
""" |
|
if isinstance(image, Image.Image): |
|
image_h = image.height |
|
image_w = image.width |
|
image = np.array(image)[:, :, [2, 1, 0]] |
|
elif isinstance(image, str): |
|
if os.path.exists(image): |
|
pil_img = Image.open(image).convert("RGB") |
|
image = np.array(pil_img)[:, :, [2, 1, 0]] |
|
image_h = pil_img.height |
|
image_w = pil_img.width |
|
else: |
|
raise ValueError(f"invaild image path, {image}") |
|
elif isinstance(image, torch.Tensor): |
|
# pdb.set_trace() |
|
image_tensor = image.cpu() |
|
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None] |
|
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None] |
|
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean |
|
pil_img = T.ToPILImage()(image_tensor) |
|
image_h = pil_img.height |
|
image_w = pil_img.width |
|
image = np.array(pil_img)[:, :, [2, 1, 0]] |
|
else: |
|
raise ValueError(f"invaild image format, {type(image)} for {image}") |
|
|
|
if len(entities) == 0: |
|
return image |
|
|
|
new_image = image.copy() |
|
previous_bboxes = [] |
|
# size of text |
|
text_size = 1 |
|
# thickness of text |
|
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1)) |
|
box_line = 3 |
|
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) |
|
base_height = int(text_height * 0.675) |
|
text_offset_original = text_height - base_height |
|
text_spaces = 3 |
|
|
|
for entity_name, (start, end), bboxes in entities: |
|
for (x1_norm, y1_norm, x2_norm, y2_norm) in bboxes: |
|
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h) |
|
# draw bbox |
|
# random color |
|
color = tuple(np.random.randint(0, 255, size=3).tolist()) |
|
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line) |
|
|
|
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1 |
|
|
|
x1 = orig_x1 - l_o |
|
y1 = orig_y1 - l_o |
|
|
|
if y1 < text_height + text_offset_original + 2 * text_spaces: |
|
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces |
|
x1 = orig_x1 + r_o |
|
|
|
# add text background |
|
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) |
|
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1 |
|
|
|
for prev_bbox in previous_bboxes: |
|
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox): |
|
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces) |
|
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces) |
|
y1 += (text_height + text_offset_original + 2 * text_spaces) |
|
|
|
if text_bg_y2 >= image_h: |
|
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces)) |
|
text_bg_y2 = image_h |
|
y1 = image_h |
|
break |
|
|
|
alpha = 0.5 |
|
for i in range(text_bg_y1, text_bg_y2): |
|
for j in range(text_bg_x1, text_bg_x2): |
|
if i < image_h and j < image_w: |
|
if j < text_bg_x1 + 1.35 * c_width: |
|
# original color |
|
bg_color = color |
|
else: |
|
# white |
|
bg_color = [255, 255, 255] |
|
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8) |
|
|
|
cv2.putText( |
|
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA |
|
) |
|
# previous_locations.append((x1, y1)) |
|
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2)) |
|
|
|
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]]) |
|
if save_path: |
|
pil_image.save(save_path) |
|
if show: |
|
pil_image.show() |
|
|
|
return new_image |
|
|
|
|
|
# (The same image from the previous code example) |
|
url = "https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/snowman.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
# From the previous code example |
|
entities = [('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])] |
|
|
|
# Draw the bounding bboxes |
|
draw_entity_boxes_on_image(image, entities, show=True) |
|
``` |
|
|
|
Here is the annotated image: |
|
|
|
<a href="https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/annotated_snowman.jpg" target="_blank"><img src="https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/annotated_snowman.jpg" width="500"></a> |
|
|
|
|
|
## Running the Flask Server |
|
_flask_kosmos2.py_ shows the implementation of a Flask server for the model. |
|
It allowes the model to be approached as a REST API. |
|
|
|
After starting the server. You can send a POST request to `http://localhost:8005/process_prompt` with the following form data: |
|
- `prompt`: For example `<grounding> an image of` |
|
- `image`: The image file as binary data |
|
|
|
This in turn will produce a reply with the following JSON format: |
|
- `message`: The Kosmos-2 generated text |
|
- `entities`: The extracted entities |
|
|
|
An easy way to test this is through an application like Postman. Make sure the image field is set to `File`. |
|
|
|
```python |
|
|
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForVision2Seq |
|
from flask import Flask, request, jsonify |
|
import json |
|
|
|
app = Flask(__name__) |
|
|
|
model = AutoModelForVision2Seq.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True) |
|
processor = AutoProcessor.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True) |
|
|
|
|
|
@app.route('/process_prompt', methods=['POST']) |
|
def process_prompt(): |
|
try: |
|
# Get the uploaded image data from the POST request |
|
uploaded_file = request.files['image'] |
|
prompt = request.form.get('prompt') |
|
image = Image.open(uploaded_file.stream) |
|
|
|
print(image.size) |
|
|
|
inputs = processor(text=prompt, images=image, return_tensors="pt") |
|
|
|
generated_ids = model.generate( |
|
pixel_values=inputs["pixel_values"], |
|
input_ids=inputs["input_ids"][:, :-1], |
|
attention_mask=inputs["attention_mask"][:, :-1], |
|
img_features=None, |
|
img_attn_mask=inputs["img_attn_mask"][:, :-1], |
|
use_cache=True, |
|
max_new_tokens=64, |
|
) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
# By default, the generated text is cleanup and the entities are extracted. |
|
processed_text, entities = processor.post_process_generation(generated_text) |
|
parsed_entities = entities_to_json(entities) |
|
print(generated_text) |
|
print(processed_text) |
|
return jsonify({"message": processed_text, 'entities': parsed_entities}) |
|
except Exception as e: |
|
return jsonify({"error": str(e)}) |
|
|
|
|
|
def entities_to_json(entities): |
|
result = [] |
|
for e in entities: |
|
label = e[0] |
|
box_coords = e[1] |
|
box_size = e[2][0] |
|
entity_result = { |
|
"label": label, |
|
"boundingBoxPosition": {"x": box_coords[0], "y": box_coords[1]}, |
|
"boundingBox": {"x_min": box_size[0], "y_min": box_size[1], "x_max": box_size[2], "y_max": box_size[3]} |
|
} |
|
print(entity_result) |
|
result.append(entity_result) |
|
|
|
return result |
|
|
|
|
|
if __name__ == '__main__': |
|
app.run(host='localhost', port=8005) |
|
|
|
``` |