|
--- |
|
license: cc-by-nc-4.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: videomae-base-finetuned-basketball-subset-v3-25epoch |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# videomae-base-finetuned-basketball-subset-v3-25epoch |
|
|
|
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8922 |
|
- Accuracy: 0.9 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 5100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 1.2489 | 0.04 | 202 | 0.7252 | 0.7 | |
|
| 0.5366 | 1.04 | 404 | 1.2745 | 0.6 | |
|
| 0.9659 | 2.04 | 606 | 0.7013 | 0.85 | |
|
| 0.0226 | 3.04 | 808 | 1.3065 | 0.7 | |
|
| 0.5437 | 4.04 | 1010 | 2.0397 | 0.7 | |
|
| 0.0002 | 5.04 | 1212 | 1.8936 | 0.75 | |
|
| 0.0003 | 6.04 | 1414 | 1.4473 | 0.8 | |
|
| 0.0193 | 7.04 | 1616 | 1.1602 | 0.75 | |
|
| 0.0001 | 8.04 | 1818 | 0.8922 | 0.9 | |
|
| 0.0001 | 9.04 | 2020 | 1.0781 | 0.85 | |
|
| 0.0 | 10.04 | 2222 | 1.1948 | 0.85 | |
|
| 0.0 | 11.04 | 2424 | 1.2431 | 0.85 | |
|
| 0.0 | 12.04 | 2626 | 1.2794 | 0.85 | |
|
| 0.0 | 13.04 | 2828 | 1.3082 | 0.85 | |
|
| 0.0 | 14.04 | 3030 | 1.3332 | 0.85 | |
|
| 0.0 | 15.04 | 3232 | 1.3539 | 0.85 | |
|
| 0.0 | 16.04 | 3434 | 1.3793 | 0.85 | |
|
| 0.0 | 17.04 | 3636 | 1.4510 | 0.8 | |
|
| 0.0 | 18.04 | 3838 | 1.5646 | 0.8 | |
|
| 0.0 | 19.04 | 4040 | 1.6535 | 0.8 | |
|
| 0.0 | 20.04 | 4242 | 1.7017 | 0.8 | |
|
| 0.0 | 21.04 | 4444 | 1.7366 | 0.8 | |
|
| 0.0 | 22.04 | 4646 | 1.7639 | 0.8 | |
|
| 0.0 | 23.04 | 4848 | 1.7792 | 0.8 | |
|
| 0.0 | 24.04 | 5050 | 1.7855 | 0.8 | |
|
| 0.0 | 25.01 | 5100 | 1.7857 | 0.8 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.12.1+cu116 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|