|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- automatic-speech-recognition |
|
- ./sample_speech.py |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: en-xlsr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# en-xlsr |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./SAMPLE_SPEECH.PY - NA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5574 |
|
- Cer: 0.0835 |
|
- Wer: 0.1854 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.01 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 0.6992 | 2.79 | 600 | 0.4981 | 0.1370 | 0.3376 | |
|
| 0.3394 | 5.58 | 1200 | 0.3934 | 0.1057 | 0.2467 | |
|
| 0.2376 | 8.37 | 1800 | 0.4123 | 0.1015 | 0.2356 | |
|
| 0.1877 | 11.16 | 2400 | 0.4269 | 0.0928 | 0.2136 | |
|
| 0.1494 | 13.95 | 3000 | 0.4648 | 0.0922 | 0.2102 | |
|
| 0.1186 | 16.74 | 3600 | 0.4835 | 0.0919 | 0.2058 | |
|
| 0.0966 | 19.53 | 4200 | 0.4986 | 0.0875 | 0.1978 | |
|
| 0.083 | 22.33 | 4800 | 0.5179 | 0.0862 | 0.1927 | |
|
| 0.071 | 25.12 | 5400 | 0.5539 | 0.0857 | 0.1908 | |
|
| 0.0648 | 27.91 | 6000 | 0.5583 | 0.0844 | 0.1870 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|