|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- automatic-speech-recognition |
|
- ./sample_speech.py |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: ko-xlsr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ko-xlsr |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./SAMPLE_SPEECH.PY - NA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4228 |
|
- Cer: 0.1091 |
|
- Wer: 0.3025 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| |
|
| 1.5566 | 0.94 | 2000 | 1.0226 | 0.2632 | 0.6184 | |
|
| 1.179 | 1.89 | 4000 | 0.7682 | 0.2001 | 0.4990 | |
|
| 1.0432 | 2.83 | 6000 | 0.6633 | 0.1749 | 0.4516 | |
|
| 0.9413 | 3.77 | 8000 | 0.6159 | 0.1624 | 0.4259 | |
|
| 0.8765 | 4.72 | 10000 | 0.5792 | 0.1538 | 0.4061 | |
|
| 0.8248 | 5.66 | 12000 | 0.5456 | 0.1446 | 0.3877 | |
|
| 0.7714 | 6.6 | 14000 | 0.5316 | 0.1397 | 0.3710 | |
|
| 0.7388 | 7.55 | 16000 | 0.5172 | 0.1356 | 0.3657 | |
|
| 0.6912 | 8.49 | 18000 | 0.4892 | 0.1291 | 0.3508 | |
|
| 0.6549 | 9.43 | 20000 | 0.4694 | 0.1241 | 0.3397 | |
|
| 0.614 | 10.37 | 22000 | 0.4615 | 0.1205 | 0.3309 | |
|
| 0.5901 | 11.32 | 24000 | 0.4489 | 0.1177 | 0.3215 | |
|
| 0.555 | 12.26 | 26000 | 0.4419 | 0.1148 | 0.3163 | |
|
| 0.5377 | 13.2 | 28000 | 0.4320 | 0.1122 | 0.3103 | |
|
| 0.5253 | 14.15 | 30000 | 0.4251 | 0.1102 | 0.3052 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|