xlsr_mid1_ko-zh / README.md
yesj1234's picture
Upload folder using huggingface_hub
b344332
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - automatic-speech-recognition
  - ./sample_speech.py
  - generated_from_trainer
model-index:
  - name: ko-xlsr5
    results: []

ko-xlsr5

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the ./SAMPLE_SPEECH.PY - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4067
  • Cer: 0.1077

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Cer
1.4452 0.97 1800 0.9257 0.2337
1.0684 1.95 3600 0.6873 0.1834
0.9269 2.92 5400 0.5857 0.1599
0.8264 3.9 7200 0.5357 0.1442
0.7637 4.87 9000 0.5069 0.1365
0.7033 5.85 10800 0.4744 0.1277
0.652 6.82 12600 0.4477 0.1210
0.5999 7.8 14400 0.4310 0.1144
0.5606 8.77 16200 0.4150 0.1114
0.5371 9.75 18000 0.4068 0.1085

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1