yigagilbert's picture
Upload tokenizer
3062cf9 verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
base_model: google/t5-efficient-tiny
datasets:
  - generator
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: salt_language_Classification
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: generator
          type: generator
          config: default
          split: train
          args: default
        metrics:
          - type: accuracy
            value: 0.9781586021505376
            name: Accuracy
          - type: precision
            value: 0.9786579334649282
            name: Precision
          - type: recall
            value: 0.9781586021505376
            name: Recall
          - type: f1
            value: 0.97818824673623
            name: F1

salt_language_Classification

This model is a fine-tuned version of google/t5-efficient-tiny on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0615
  • Accuracy: 0.9782
  • Precision: 0.9787
  • Recall: 0.9782
  • F1: 0.9782

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • training_steps: 20000

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.2011 0.025 500 0.4979 0.8733 0.9001 0.8733 0.8714
0.234 0.05 1000 0.1886 0.9345 0.9354 0.9345 0.9345
0.2083 0.075 1500 0.1833 0.9328 0.9391 0.9328 0.9328
0.1838 0.1 2000 0.1457 0.9476 0.9479 0.9476 0.9475
0.1737 0.125 2500 0.1659 0.9409 0.9438 0.9409 0.9411
0.1591 0.15 3000 0.1450 0.9516 0.9524 0.9516 0.9517
0.1571 0.175 3500 0.1351 0.9459 0.9485 0.9459 0.9461
0.1513 0.2 4000 0.1510 0.9456 0.9515 0.9456 0.9460
0.1439 0.225 4500 0.1339 0.9546 0.9578 0.9546 0.9547
0.1394 0.25 5000 0.1052 0.9657 0.9658 0.9657 0.9656
0.1472 0.275 5500 0.1088 0.9610 0.9629 0.9610 0.9609
0.1385 0.3 6000 0.0792 0.9694 0.9696 0.9694 0.9694
0.1349 0.325 6500 0.1063 0.9610 0.9632 0.9610 0.9613
0.1215 0.35 7000 0.0855 0.9688 0.9694 0.9688 0.9687
0.133 0.375 7500 0.1049 0.9630 0.9640 0.9630 0.9630
0.1226 0.4 8000 0.0938 0.9667 0.9675 0.9667 0.9667
0.1222 0.425 8500 0.1134 0.9570 0.9604 0.9570 0.9573
0.1165 0.45 9000 0.0997 0.9688 0.9697 0.9688 0.9687
0.1174 0.475 9500 0.1002 0.9661 0.9680 0.9661 0.9659
0.1165 0.5 10000 0.0807 0.9728 0.9728 0.9728 0.9728
0.1065 0.525 10500 0.0750 0.9745 0.9754 0.9745 0.9746
0.1089 0.55 11000 0.0896 0.9688 0.9703 0.9688 0.9689
0.1125 0.575 11500 0.0632 0.9782 0.9787 0.9782 0.9782
0.11 0.6 12000 0.0775 0.9691 0.9708 0.9691 0.9692
0.1028 0.625 12500 0.0833 0.9698 0.9708 0.9698 0.9698
0.1052 0.65 13000 0.0663 0.9751 0.9755 0.9751 0.9751
0.1068 0.675 13500 0.0648 0.9772 0.9774 0.9772 0.9772
0.1029 0.7 14000 0.0962 0.9688 0.9706 0.9688 0.9689
0.1014 0.725 14500 0.0686 0.9772 0.9775 0.9772 0.9771
0.0978 0.75 15000 0.0802 0.9745 0.9752 0.9745 0.9745
0.095 0.775 15500 0.0646 0.9758 0.9763 0.9758 0.9758
0.0996 0.8 16000 0.0711 0.9758 0.9761 0.9758 0.9758
0.0967 0.825 16500 0.0683 0.9761 0.9768 0.9761 0.9761
0.0939 0.85 17000 0.0572 0.9792 0.9795 0.9792 0.9791
0.0966 0.875 17500 0.0527 0.9792 0.9794 0.9792 0.9791
0.0925 0.9 18000 0.0581 0.9798 0.9802 0.9798 0.9799
0.0945 0.925 18500 0.0693 0.9768 0.9776 0.9768 0.9768
0.0923 0.95 19000 0.0615 0.9785 0.9790 0.9785 0.9785
0.0896 0.975 19500 0.0643 0.9758 0.9766 0.9758 0.9758
0.0979 1.0 20000 0.0619 0.9765 0.9770 0.9765 0.9765

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1