File size: 2,086 Bytes
ce9b573 e70b98b ce9b573 58920ce e70b98b ce9b573 9ae1ebe f196580 9ae1ebe d79586f 9ae1ebe d79586f 9ae1ebe 44b10fe 9ae1ebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
language:
- en
library_name: transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- ONNX
- Optimum
- ONNXRuntime
inference: false
---
# ONNX version of `sentence-transformers/all-mpnet-base-v2`
This is the ONNX version of https://huggingface.co/sentence-transformers/all-mpnet-base-v2, examined that the produced embeddings are the same.
Optmized for CPU usage.
## Convert
The same checkpoint can also be created by using the `convert.py` script.
## Usage - `transformers`
Exactly the same as in `sentence-transformers/all-mpnet-base-v2` except using `ORTModelForFeatureExtraction` from optimum.
```bash
pip install optimum[onnxruntime]
```
```python
from transformers import AutoTokenizer
from optimum.onnxruntime import ORTModelForFeatureExtraction
import torch
import torch.nn.functional as F
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('yilunzhang/all-mpnet-base-v2-onnx')
model = ORTModelForFeatureExtraction.from_pretrained('yilunzhang/all-mpnet-base-v2-onnx')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:")
print(sentence_embeddings)
``` |