whisper-small-ar-v2 / README.md
ymoslem's picture
Update README.md
7b531b4 verified
metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
  - audio
  - automatic-speech-recognition
metrics:
  - wer
widget:
  - example_title: Sample 1
    src: sample_ar_1.mp3
  - example_title: Sample 2
    src: sample_ar_2.mp3
model-index:
  - name: whisper-small-ar-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_1
          type: common_voice_16_1
          config: ar
          split: test
          args: ar
        metrics:
          - name: Wer
            type: wer
            value: 47.726437288634024
language:
  - ar
library_name: transformers
pipeline_tag: automatic-speech-recognition
datasets:
  - mozilla-foundation/common_voice_16_1

whisper-small-ar-v2

This model is for Arabic automatic speech recognition (ASR). It is a fine-tuned version of openai/whisper-small on the Arabic portion of the mozilla-foundation/common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4007
  • Wer: 47.7264

Model description

Whisper model fine-tuned on Arabic data, following the official tutorial.

Intended uses & limitations

It is recommended to fine-tune and evaluate on your data before using it.

Training and evaluation data

Training Data: CommonVoice (v16.1) Arabic train + validation splits
Validation Data: CommonVoice (v16.1) Arabic test split

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2742 0.82 1000 0.3790 275.2463
0.1625 1.65 2000 0.3353 228.5252
0.1002 2.47 3000 0.3311 238.8858
0.0751 3.3 4000 0.3354 158.1532
0.0601 4.12 5000 0.3576 48.9285
0.0612 4.95 6000 0.3575 47.8937
0.0383 5.77 7000 0.3819 46.9085
0.0234 6.6 8000 0.4007 47.7264

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.17.1
  • Tokenizers 0.15.2