Edit model card

PPO Agent playing LunarLander-v2

This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.

Usage (with Stable-baselines3)

import gym
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from huggingface_sb3 import load_from_hub

repo_id = "yogeshkulkarni/ppo-LunarLander-v2" # The repo_id
filename = "ppo-LunarLander-v2.zip" # The model filename.zip

# When the model was trained on Python 3.8 the pickle protocol is 5
# But Python 3.6, 3.7 use protocol 4
# In order to get compatibility we need to:
# 1. Install pickle5 (we done it at the beginning of the colab)
# 2. Create a custom empty object we pass as parameter to PPO.load()
custom_objects = {
            "learning_rate": 0.0,
            "lr_schedule": lambda _: 0.0,
            "clip_range": lambda _: 0.0,
}

checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True)

# Evaluate this model
eval_env = gym.make("LunarLander-v2")
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
Downloads last month
2
Video Preview
loading

Evaluation results