|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import math |
|
import shutil |
|
import time |
|
import sys |
|
import types |
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import torch.distributed as dist |
|
|
|
from torch.cuda.amp import autocast |
|
|
|
|
|
|
|
|
|
class AvgrageMeter(object): |
|
|
|
def __init__(self): |
|
self.reset() |
|
|
|
def reset(self): |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.cnt = 0 |
|
|
|
def update(self, val, n=1): |
|
self.sum += val * n |
|
self.cnt += n |
|
self.avg = self.sum / self.cnt |
|
|
|
|
|
class ExpMovingAvgrageMeter(object): |
|
|
|
def __init__(self, momentum=0.9): |
|
self.momentum = momentum |
|
self.reset() |
|
|
|
def reset(self): |
|
self.avg = 0 |
|
|
|
def update(self, val): |
|
self.avg = (1. - self.momentum) * self.avg + self.momentum * val |
|
|
|
|
|
class DummyDDP(nn.Module): |
|
def __init__(self, model): |
|
super(DummyDDP, self).__init__() |
|
self.module = model |
|
|
|
def forward(self, *input, **kwargs): |
|
return self.module(*input, **kwargs) |
|
|
|
|
|
def count_parameters_in_M(model): |
|
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6 |
|
|
|
|
|
def save_checkpoint(state, is_best, save): |
|
filename = os.path.join(save, 'checkpoint.pth.tar') |
|
torch.save(state, filename) |
|
if is_best: |
|
best_filename = os.path.join(save, 'model_best.pth.tar') |
|
shutil.copyfile(filename, best_filename) |
|
|
|
|
|
def save(model, model_path): |
|
torch.save(model.state_dict(), model_path) |
|
|
|
|
|
def load(model, model_path): |
|
model.load_state_dict(torch.load(model_path)) |
|
|
|
|
|
def create_exp_dir(path, scripts_to_save=None): |
|
if not os.path.exists(path): |
|
os.makedirs(path, exist_ok=True) |
|
print('Experiment dir : {}'.format(path)) |
|
|
|
if scripts_to_save is not None: |
|
if not os.path.exists(os.path.join(path, 'scripts')): |
|
os.mkdir(os.path.join(path, 'scripts')) |
|
for script in scripts_to_save: |
|
dst_file = os.path.join(path, 'scripts', os.path.basename(script)) |
|
shutil.copyfile(script, dst_file) |
|
|
|
|
|
class Logger(object): |
|
def __init__(self, rank, save): |
|
|
|
|
|
from importlib import reload |
|
reload(logging) |
|
self.rank = rank |
|
if self.rank == 0: |
|
log_format = '%(asctime)s %(message)s' |
|
logging.basicConfig(stream=sys.stdout, level=logging.INFO, |
|
format=log_format, datefmt='%m/%d %I:%M:%S %p') |
|
fh = logging.FileHandler(os.path.join(save, 'log.txt')) |
|
fh.setFormatter(logging.Formatter(log_format)) |
|
logging.getLogger().addHandler(fh) |
|
self.start_time = time.time() |
|
|
|
def info(self, string, *args): |
|
if self.rank == 0: |
|
elapsed_time = time.time() - self.start_time |
|
elapsed_time = time.strftime( |
|
'(Elapsed: %H:%M:%S) ', time.gmtime(elapsed_time)) |
|
if isinstance(string, str): |
|
string = elapsed_time + string |
|
else: |
|
logging.info(elapsed_time) |
|
logging.info(string, *args) |
|
|
|
|
|
class Writer(object): |
|
def __init__(self, rank, save): |
|
self.rank = rank |
|
if self.rank == 0: |
|
self.writer = SummaryWriter(log_dir=save, flush_secs=20) |
|
|
|
def add_scalar(self, *args, **kwargs): |
|
if self.rank == 0: |
|
self.writer.add_scalar(*args, **kwargs) |
|
|
|
def add_figure(self, *args, **kwargs): |
|
if self.rank == 0: |
|
self.writer.add_figure(*args, **kwargs) |
|
|
|
def add_image(self, *args, **kwargs): |
|
if self.rank == 0: |
|
self.writer.add_image(*args, **kwargs) |
|
|
|
def add_histogram(self, *args, **kwargs): |
|
if self.rank == 0: |
|
self.writer.add_histogram(*args, **kwargs) |
|
|
|
def add_histogram_if(self, write, *args, **kwargs): |
|
if write and False: |
|
self.add_histogram(*args, **kwargs) |
|
|
|
def close(self, *args, **kwargs): |
|
if self.rank == 0: |
|
self.writer.close() |
|
|
|
|
|
def common_init(rank, seed, save_dir): |
|
|
|
torch.manual_seed(rank + seed) |
|
np.random.seed(rank + seed) |
|
torch.cuda.manual_seed(rank + seed) |
|
torch.cuda.manual_seed_all(rank + seed) |
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
logging = Logger(rank, save_dir) |
|
writer = Writer(rank, save_dir) |
|
|
|
return logging, writer |
|
|
|
|
|
def reduce_tensor(tensor, world_size): |
|
rt = tensor.clone() |
|
dist.all_reduce(rt, op=dist.ReduceOp.SUM) |
|
rt /= world_size |
|
return rt |
|
|
|
|
|
def get_stride_for_cell_type(cell_type): |
|
if cell_type.startswith('normal') or cell_type.startswith('combiner'): |
|
stride = 1 |
|
elif cell_type.startswith('down'): |
|
stride = 2 |
|
elif cell_type.startswith('up'): |
|
stride = -1 |
|
else: |
|
raise NotImplementedError(cell_type) |
|
|
|
return stride |
|
|
|
|
|
def get_cout(cin, stride): |
|
if stride == 1: |
|
cout = cin |
|
elif stride == -1: |
|
cout = cin // 2 |
|
elif stride == 2: |
|
cout = 2 * cin |
|
|
|
return cout |
|
|
|
|
|
def kl_balancer_coeff(num_scales, groups_per_scale, fun): |
|
if fun == 'equal': |
|
coeff = torch.cat([torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda() |
|
elif fun == 'linear': |
|
coeff = torch.cat([(2 ** i) * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], |
|
dim=0).cuda() |
|
elif fun == 'sqrt': |
|
coeff = torch.cat( |
|
[np.sqrt(2 ** i) * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], |
|
dim=0).cuda() |
|
elif fun == 'square': |
|
coeff = torch.cat( |
|
[np.square(2 ** i) / groups_per_scale[num_scales - i - 1] * torch.ones(groups_per_scale[num_scales - i - 1]) |
|
for i in range(num_scales)], dim=0).cuda() |
|
else: |
|
raise NotImplementedError |
|
|
|
coeff /= torch.min(coeff) |
|
return coeff |
|
|
|
|
|
def kl_per_group(kl_all): |
|
kl_vals = torch.mean(kl_all, dim=0) |
|
kl_coeff_i = torch.abs(kl_all) |
|
kl_coeff_i = torch.mean(kl_coeff_i, dim=0, keepdim=True) + 0.01 |
|
|
|
return kl_coeff_i, kl_vals |
|
|
|
|
|
def kl_balancer(kl_all, kl_coeff=1.0, kl_balance=False, alpha_i=None): |
|
if kl_balance and kl_coeff < 1.0: |
|
alpha_i = alpha_i.unsqueeze(0) |
|
|
|
kl_all = torch.stack(kl_all, dim=1) |
|
kl_coeff_i, kl_vals = kl_per_group(kl_all) |
|
total_kl = torch.sum(kl_coeff_i) |
|
|
|
kl_coeff_i = kl_coeff_i / alpha_i * total_kl |
|
kl_coeff_i = kl_coeff_i / torch.mean(kl_coeff_i, dim=1, keepdim=True) |
|
kl = torch.sum(kl_all * kl_coeff_i.detach(), dim=1) |
|
|
|
|
|
kl_coeffs = kl_coeff_i.squeeze(0) |
|
else: |
|
kl_all = torch.stack(kl_all, dim=1) |
|
kl_vals = torch.mean(kl_all, dim=0) |
|
|
|
|
|
kl = torch.mean(kl_all) |
|
kl_coeffs = torch.ones(size=(len(kl_vals),)) |
|
|
|
return kl_coeff * kl, kl_coeffs, kl_vals |
|
|
|
|
|
def kl_per_group_vada(all_log_q, all_neg_log_p): |
|
assert len(all_log_q) == len(all_neg_log_p) |
|
|
|
kl_all_list = [] |
|
kl_diag = [] |
|
for log_q, neg_log_p in zip(all_log_q, all_neg_log_p): |
|
|
|
kl_diag.append(torch.mean(torch.mean(neg_log_p + log_q, dim=[2, 3]), dim=0)) |
|
|
|
kl_all_list.append(torch.mean(neg_log_p + log_q, dim=[1, 2, 3])) |
|
|
|
|
|
kl_vals = torch.mean(torch.stack(kl_all_list, dim=1), dim=0) |
|
|
|
return kl_all_list, kl_vals, kl_diag |
|
|
|
|
|
def kl_coeff(step, total_step, constant_step, min_kl_coeff, max_kl_coeff): |
|
|
|
return max(min(min_kl_coeff + (max_kl_coeff - min_kl_coeff) * (step - constant_step) / total_step, max_kl_coeff), min_kl_coeff) |
|
|
|
|
|
def log_iw(decoder, x, log_q, log_p, crop=False): |
|
recon = reconstruction_loss(decoder, x, crop) |
|
return - recon - log_q + log_p |
|
|
|
|
|
def reconstruction_loss(decoder, x, crop=False): |
|
from util.distributions import DiscMixLogistic |
|
|
|
recon = decoder.log_p(x) |
|
if crop: |
|
recon = recon[:, :, 2:30, 2:30] |
|
|
|
if isinstance(decoder, DiscMixLogistic): |
|
return - torch.sum(recon, dim=[1, 2]) |
|
else: |
|
return - torch.sum(recon, dim=[1, 2, 3]) |
|
|
|
|
|
def vae_terms(all_log_q, all_eps): |
|
from util.distributions import log_p_standard_normal |
|
|
|
|
|
kl_all = [] |
|
kl_diag = [] |
|
log_p, log_q = 0., 0. |
|
for log_q_conv, eps in zip(all_log_q, all_eps): |
|
log_p_conv = log_p_standard_normal(eps) |
|
kl_per_var = log_q_conv - log_p_conv |
|
kl_diag.append(torch.mean(torch.sum(kl_per_var, dim=[2, 3]), dim=0)) |
|
kl_all.append(torch.sum(kl_per_var, dim=[1, 2, 3])) |
|
log_q += torch.sum(log_q_conv, dim=[1, 2, 3]) |
|
log_p += torch.sum(log_p_conv, dim=[1, 2, 3]) |
|
return log_q, log_p, kl_all, kl_diag |
|
|
|
|
|
def sum_log_q(all_log_q): |
|
log_q = 0. |
|
for log_q_conv in all_log_q: |
|
log_q += torch.sum(log_q_conv, dim=[1, 2, 3]) |
|
|
|
return log_q |
|
|
|
|
|
def cross_entropy_normal(all_eps): |
|
from util.distributions import log_p_standard_normal |
|
|
|
cross_entropy = 0. |
|
neg_log_p_per_group = [] |
|
for eps in all_eps: |
|
neg_log_p_conv = - log_p_standard_normal(eps) |
|
neg_log_p = torch.sum(neg_log_p_conv, dim=[1, 2, 3]) |
|
cross_entropy += neg_log_p |
|
neg_log_p_per_group.append(neg_log_p_conv) |
|
|
|
return cross_entropy, neg_log_p_per_group |
|
|
|
|
|
def tile_image(batch_image, n, m=None): |
|
if m is None: |
|
m = n |
|
assert n * m == batch_image.size(0) |
|
channels, height, width = batch_image.size(1), batch_image.size(2), batch_image.size(3) |
|
batch_image = batch_image.view(n, m, channels, height, width) |
|
batch_image = batch_image.permute(2, 0, 3, 1, 4) |
|
batch_image = batch_image.contiguous().view(channels, n * height, m * width) |
|
return batch_image |
|
|
|
|
|
def average_gradients_naive(params, is_distributed): |
|
""" Gradient averaging. """ |
|
if is_distributed: |
|
size = float(dist.get_world_size()) |
|
for param in params: |
|
if param.requires_grad: |
|
param.grad.data /= size |
|
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM) |
|
|
|
|
|
def average_gradients(params, is_distributed): |
|
""" Gradient averaging. """ |
|
if is_distributed: |
|
if isinstance(params, types.GeneratorType): |
|
params = [p for p in params] |
|
|
|
size = float(dist.get_world_size()) |
|
grad_data = [] |
|
grad_size = [] |
|
grad_shapes = [] |
|
|
|
for param in params: |
|
if param.requires_grad: |
|
grad_size.append(param.grad.data.numel()) |
|
grad_shapes.append(list(param.grad.data.shape)) |
|
grad_data.append(param.grad.data.flatten()) |
|
grad_data = torch.cat(grad_data).contiguous() |
|
|
|
|
|
grad_data /= size |
|
dist.all_reduce(grad_data, op=dist.ReduceOp.SUM) |
|
|
|
|
|
base = 0 |
|
for i, param in enumerate(params): |
|
if param.requires_grad: |
|
param.grad.data = grad_data[base:base + grad_size[i]].view(grad_shapes[i]) |
|
base += grad_size[i] |
|
|
|
|
|
def average_params(params, is_distributed): |
|
""" parameter averaging. """ |
|
if is_distributed: |
|
size = float(dist.get_world_size()) |
|
for param in params: |
|
param.data /= size |
|
dist.all_reduce(param.data, op=dist.ReduceOp.SUM) |
|
|
|
|
|
def average_tensor(t, is_distributed): |
|
if is_distributed: |
|
size = float(dist.get_world_size()) |
|
dist.all_reduce(t.data, op=dist.ReduceOp.SUM) |
|
t.data /= size |
|
|
|
|
|
def broadcast_params(params, is_distributed): |
|
if is_distributed: |
|
for param in params: |
|
dist.broadcast(param.data, src=0) |
|
|
|
|
|
def num_output(dataset): |
|
if dataset in {'mnist', 'omniglot'}: |
|
return 28 * 28 |
|
elif dataset == 'cifar10': |
|
return 3 * 32 * 32 |
|
elif dataset.startswith('celeba') or dataset.startswith('imagenet') or dataset.startswith('lsun'): |
|
size = int(dataset.split('_')[-1]) |
|
return 3 * size * size |
|
elif dataset == 'ffhq': |
|
return 3 * 256 * 256 |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
def get_input_size(dataset): |
|
if dataset in {'mnist', 'omniglot'}: |
|
return 32 |
|
elif dataset == 'cifar10': |
|
return 32 |
|
elif dataset.startswith('celeba') or dataset.startswith('imagenet') or dataset.startswith('lsun'): |
|
size = int(dataset.split('_')[-1]) |
|
return size |
|
elif dataset == 'ffhq': |
|
return 256 |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
def get_bpd_coeff(dataset): |
|
n = num_output(dataset) |
|
return 1. / np.log(2.) / n |
|
|
|
|
|
def get_channel_multiplier(dataset, num_scales): |
|
if dataset in {'cifar10', 'omniglot'}: |
|
mult = (1, 1, 1) |
|
elif dataset in {'celeba_256', 'ffhq', 'lsun_church_256'}: |
|
if num_scales == 3: |
|
mult = (1, 1, 1) |
|
elif num_scales == 4: |
|
mult = (1, 2, 2, 2) |
|
elif num_scales == 5: |
|
mult = (1, 1, 2, 2, 2) |
|
elif dataset == 'mnist': |
|
mult = (1, 1) |
|
else: |
|
raise NotImplementedError |
|
|
|
return mult |
|
|
|
|
|
def get_attention_scales(dataset): |
|
if dataset in {'cifar10', 'omniglot'}: |
|
attn = (True, False, False) |
|
elif dataset in {'celeba_256', 'ffhq', 'lsun_church_256'}: |
|
|
|
attn = (False, False, True, False, False) |
|
elif dataset == 'mnist': |
|
attn = (True, False) |
|
else: |
|
raise NotImplementedError |
|
|
|
return attn |
|
|
|
|
|
def change_bit_length(x, num_bits): |
|
if num_bits != 8: |
|
x = torch.floor(x * 255 / 2 ** (8 - num_bits)) |
|
x /= (2 ** num_bits - 1) |
|
return x |
|
|
|
|
|
def view4D(t, size, inplace=True): |
|
""" |
|
Equal to view(-1, 1, 1, 1).expand(size) |
|
Designed because of this bug: |
|
https://github.com/pytorch/pytorch/pull/48696 |
|
""" |
|
if inplace: |
|
return t.unsqueeze_(-1).unsqueeze_(-1).unsqueeze_(-1).expand(size) |
|
else: |
|
return t.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(size) |
|
|
|
|
|
def get_arch_cells(arch_type, use_se): |
|
if arch_type == 'res_mbconv': |
|
arch_cells = dict() |
|
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se} |
|
arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se} |
|
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} |
|
arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} |
|
arch_cells['ar_nn'] = [''] |
|
elif arch_type == 'res_bnswish': |
|
arch_cells = dict() |
|
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['normal_dec'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['up_dec'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['normal_post'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['up_post'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['ar_nn'] = [''] |
|
elif arch_type == 'res_bnswish2': |
|
arch_cells = dict() |
|
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} |
|
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} |
|
arch_cells['normal_dec'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} |
|
arch_cells['up_dec'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} |
|
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} |
|
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} |
|
arch_cells['normal_post'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} |
|
arch_cells['up_post'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} |
|
arch_cells['ar_nn'] = [''] |
|
elif arch_type == 'res_mbconv_attn': |
|
arch_cells = dict() |
|
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish', ], 'se': use_se, 'attn_type': 'attn'} |
|
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se, 'attn_type': 'attn'} |
|
arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'} |
|
arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'} |
|
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} |
|
arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} |
|
arch_cells['ar_nn'] = [''] |
|
elif arch_type == 'res_mbconv_attn_half': |
|
arch_cells = dict() |
|
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'} |
|
arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'} |
|
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} |
|
arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} |
|
arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} |
|
arch_cells['ar_nn'] = [''] |
|
else: |
|
raise NotImplementedError |
|
|
|
return arch_cells |
|
|
|
|
|
def groups_per_scale(num_scales, num_groups_per_scale): |
|
g = [] |
|
n = num_groups_per_scale |
|
for s in range(num_scales): |
|
assert n >= 1 |
|
g.append(n) |
|
return g |
|
|
|
|
|
class PositionalEmbedding(nn.Module): |
|
def __init__(self, embedding_dim, scale): |
|
super(PositionalEmbedding, self).__init__() |
|
self.embedding_dim = embedding_dim |
|
self.scale = scale |
|
|
|
def forward(self, timesteps): |
|
assert len(timesteps.shape) == 1 |
|
timesteps = timesteps * self.scale |
|
half_dim = self.embedding_dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim) * -emb) |
|
emb = emb.to(device=timesteps.device) |
|
emb = timesteps[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
return emb |
|
|
|
|
|
class RandomFourierEmbedding(nn.Module): |
|
def __init__(self, embedding_dim, scale): |
|
super(RandomFourierEmbedding, self).__init__() |
|
self.w = nn.Parameter(torch.randn(size=(1, embedding_dim // 2)) * scale, requires_grad=False) |
|
|
|
def forward(self, timesteps): |
|
emb = torch.mm(timesteps[:, None], self.w * 2 * 3.14159265359) |
|
return torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
|
|
|
|
def init_temb_fun(embedding_type, embedding_scale, embedding_dim): |
|
if embedding_type == 'positional': |
|
temb_fun = PositionalEmbedding(embedding_dim, embedding_scale) |
|
elif embedding_type == 'fourier': |
|
temb_fun = RandomFourierEmbedding(embedding_dim, embedding_scale) |
|
else: |
|
raise NotImplementedError |
|
|
|
return temb_fun |
|
|
|
def get_dae_model(args, num_input_channels): |
|
if args.dae_arch == 'ncsnpp': |
|
|
|
from score_sde.ncsnpp import NCSNpp |
|
dae = NCSNpp(args, num_input_channels) |
|
else: |
|
raise NotImplementedError |
|
|
|
return dae |
|
|
|
def symmetrize_image_data(images): |
|
return 2.0 * images - 1.0 |
|
|
|
|
|
def unsymmetrize_image_data(images): |
|
return (images + 1.) / 2. |
|
|
|
|
|
def normalize_symmetric(images): |
|
""" |
|
Normalize images by dividing the largest intensity. Used for visualizing the intermediate steps. |
|
""" |
|
b = images.shape[0] |
|
m, _ = torch.max(torch.abs(images).view(b, -1), dim=1) |
|
images /= (m.view(b, 1, 1, 1) + 1e-3) |
|
|
|
return images |
|
|
|
|
|
@torch.jit.script |
|
def soft_clamp5(x: torch.Tensor): |
|
return x.div(5.).tanh_().mul(5.) |
|
|
|
@torch.jit.script |
|
def soft_clamp(x: torch.Tensor, a: torch.Tensor): |
|
return x.div(a).tanh_().mul(a) |
|
|
|
class SoftClamp5(nn.Module): |
|
def __init__(self): |
|
super(SoftClamp5, self).__init__() |
|
|
|
def forward(self, x): |
|
return soft_clamp5(x) |
|
|
|
|
|
def override_architecture_fields(args, stored_args, logging): |
|
|
|
architecture_fields = ['arch_instance', 'num_nf', 'num_latent_scales', 'num_groups_per_scale', |
|
'num_latent_per_group', 'num_channels_enc', 'num_preprocess_blocks', |
|
'num_preprocess_cells', 'num_cell_per_cond_enc', 'num_channels_dec', |
|
'num_postprocess_blocks', 'num_postprocess_cells', 'num_cell_per_cond_dec', |
|
'decoder_dist', 'num_x_bits', 'log_sig_q_scale', |
|
'progressive_input_vae', 'channel_mult'] |
|
|
|
|
|
""" We have broken backward compatibility. No need to se these manually |
|
if not hasattr(stored_args, 'log_sig_q_scale'): |
|
logging.info('*** Setting %s manually ****', 'log_sig_q_scale') |
|
setattr(stored_args, 'log_sig_q_scale', 5.) |
|
|
|
if not hasattr(stored_args, 'latent_grad_cutoff'): |
|
logging.info('*** Setting %s manually ****', 'latent_grad_cutoff') |
|
setattr(stored_args, 'latent_grad_cutoff', 0.) |
|
|
|
if not hasattr(stored_args, 'progressive_input_vae'): |
|
logging.info('*** Setting %s manually ****', 'progressive_input_vae') |
|
setattr(stored_args, 'progressive_input_vae', 'none') |
|
|
|
if not hasattr(stored_args, 'progressive_output_vae'): |
|
logging.info('*** Setting %s manually ****', 'progressive_output_vae') |
|
setattr(stored_args, 'progressive_output_vae', 'none') |
|
""" |
|
|
|
if not hasattr(stored_args, 'num_x_bits'): |
|
logging.info('*** Setting %s manually ****', 'num_x_bits') |
|
setattr(stored_args, 'num_x_bits', 8) |
|
|
|
if not hasattr(stored_args, 'channel_mult'): |
|
logging.info('*** Setting %s manually ****', 'channel_mult') |
|
setattr(stored_args, 'channel_mult', [1, 2]) |
|
|
|
for f in architecture_fields: |
|
if not hasattr(args, f) or getattr(args, f) != getattr(stored_args, f): |
|
logging.info('Setting %s from loaded checkpoint', f) |
|
setattr(args, f, getattr(stored_args, f)) |
|
|
|
|
|
def init_processes(rank, size, fn, args): |
|
""" Initialize the distributed environment. """ |
|
os.environ['MASTER_ADDR'] = args.master_address |
|
os.environ['MASTER_PORT'] = '6020' |
|
torch.cuda.set_device(args.local_rank) |
|
dist.init_process_group(backend='nccl', init_method='env://', rank=rank, world_size=size) |
|
fn(args) |
|
dist.barrier() |
|
dist.destroy_process_group() |
|
|
|
|
|
def sample_rademacher_like(y): |
|
return torch.randint(low=0, high=2, size=y.shape, device='cuda') * 2 - 1 |
|
|
|
|
|
def sample_gaussian_like(y): |
|
return torch.randn_like(y, device='cuda') |
|
|
|
|
|
def trace_df_dx_hutchinson(f, x, noise, no_autograd): |
|
""" |
|
Hutchinson's trace estimator for Jacobian df/dx, O(1) call to autograd |
|
""" |
|
if no_autograd: |
|
|
|
torch.sum(f * noise).backward() |
|
|
|
jvp = x.grad |
|
trJ = torch.sum(jvp * noise, dim=[1, 2, 3]) |
|
x.grad = None |
|
else: |
|
jvp = torch.autograd.grad(f, x, noise, create_graph=False)[0] |
|
trJ = torch.sum(jvp * noise, dim=[1, 2, 3]) |
|
|
|
|
|
return trJ |
|
|
|
def different_p_q_objectives(iw_sample_p, iw_sample_q): |
|
assert iw_sample_p in ['ll_uniform', 'drop_all_uniform', 'll_iw', 'drop_all_iw', 'drop_sigma2t_iw', 'rescale_iw', |
|
'drop_sigma2t_uniform'] |
|
assert iw_sample_q in ['reweight_p_samples', 'll_uniform', 'll_iw'] |
|
|
|
|
|
if iw_sample_p in ['ll_uniform', 'll_iw'] and iw_sample_q == 'reweight_p_samples': |
|
return False |
|
|
|
|
|
else: |
|
return True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_mixed_prediction(mixed_prediction, param, mixing_logit, mixing_component=None): |
|
if mixed_prediction: |
|
assert mixing_component is not None, 'Provide mixing component when mixed_prediction is enabled.' |
|
coeff = torch.sigmoid(mixing_logit) |
|
param = (1 - coeff) * mixing_component + coeff * param |
|
|
|
return param |
|
|
|
|
|
def set_vesde_sigma_max(args, vae, train_queue, logging, is_distributed): |
|
logging.info('') |
|
logging.info('Calculating max. pairwise distance in latent space to set sigma2_max for VESDE...') |
|
|
|
eps_list = [] |
|
vae.eval() |
|
for step, x in enumerate(train_queue): |
|
x = x[0] if len(x) > 1 else x |
|
x = x.cuda() |
|
x = symmetrize_image_data(x) |
|
|
|
|
|
with autocast(enabled=args.autocast_train): |
|
with torch.set_grad_enabled(False): |
|
logits, all_log_q, all_eps = vae(x) |
|
eps = torch.cat(all_eps, dim=1) |
|
|
|
eps_list.append(eps.detach()) |
|
|
|
|
|
eps_this_rank = torch.cat(eps_list, dim=0) |
|
if is_distributed: |
|
eps_all_gathered = [torch.zeros_like(eps_this_rank)] * dist.get_world_size() |
|
dist.all_gather(eps_all_gathered, eps_this_rank) |
|
eps_full = torch.cat(eps_all_gathered, dim=0) |
|
else: |
|
eps_full = eps_this_rank |
|
|
|
|
|
eps_full = eps_full.cpu().float() |
|
eps_full = eps_full.flatten(start_dim=1).unsqueeze(0) |
|
max_pairwise_dist_sqr = torch.cdist(eps_full, eps_full).square().max() |
|
max_pairwise_dist_sqr = max_pairwise_dist_sqr.cuda() |
|
|
|
|
|
if is_distributed: |
|
dist.broadcast(max_pairwise_dist_sqr, src=0) |
|
|
|
args.sigma2_max = max_pairwise_dist_sqr.item() |
|
|
|
logging.info('Done! Set args.sigma2_max set to {}'.format(args.sigma2_max)) |
|
logging.info('') |
|
return args |
|
|
|
|
|
def mask_inactive_variables(x, is_active): |
|
x = x * is_active |
|
return x |
|
|
|
|
|
def common_x_operations(x, num_x_bits): |
|
x = x[0] if len(x) > 1 else x |
|
x = x.cuda() |
|
|
|
|
|
x = change_bit_length(x, num_x_bits) |
|
x = symmetrize_image_data(x) |
|
|
|
return x |
|
|