SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2 on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yudude/all-mpnet-base-v2-sts")
# Run inference
sentences = [
" - PTP Unlocked|Reported by & Contact # DU Health Check\nImpact: UE's will roam What groups are engaged: NOCoE\nFull issue description: -PTP Unlocked",
'DU Health reported PTP unlocked',
'DU PTP unlocked',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8503 |
spearman_cosine | 0.8647 |
pearson_manhattan | 0.8611 |
spearman_manhattan | 0.8633 |
pearson_euclidean | 0.8628 |
spearman_euclidean | 0.8647 |
pearson_dot | 0.8503 |
spearman_dot | 0.8647 |
pearson_max | 0.8628 |
spearman_max | 0.8647 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 60 training samples
- Columns:
description
,search_key
, andlabel
- Approximate statistics based on the first 60 samples:
description search_key label type string string float details - min: 20 tokens
- mean: 143.83 tokens
- max: 384 tokens
- min: 5 tokens
- mean: 8.75 tokens
- max: 13 tokens
- min: 0.9
- mean: 0.95
- max: 0.99
- Samples:
description search_key label UE can not camp on network (drive test)
RU Healthcheck is okay Network drive test shows UE cannot attach
Samsung Alert : UADPF: 12345 (AAA) - service-off at /0725C-NR
UADPF Service off issue
0.95
Samsung Alert : UADPF: 12345 (AAA) - - service-off at 0725C-NR
Vendor UADPF service off issue
0.94
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
csv
- Dataset: csv
- Size: 12 evaluation samples
- Columns:
description
,search_key
, andlabel
- Approximate statistics based on the first 12 samples:
description search_key label type string string float details - min: 32 tokens
- mean: 71.67 tokens
- max: 109 tokens
- min: 5 tokens
- mean: 7.92 tokens
- max: 11 tokens
- min: 0.9
- mean: 0.95
- max: 0.99
- Samples:
description search_key label Temperature Sensor Fault ALERT
with Temperature: Max cell ST1 29.4 - PTP Unlocked
Reported by & Contact # DU Health Check
Impact: UE's will roam
Bridge: https://meet.google.com/oab-hmxd-qsa
What groups are engaged: NOCoE
Full issue description: -PTP UnlockedPrecision Time Protocol (PTP) unlocked
- PTP Unlocked
Reported by & Contact # DU Health Check
Impact: UE's will roam
Bridge: https://meet.google.com/oab-hmxd-qsa
What groups are engaged: NOCoE
Full issue description: -PTP UnlockedDU PTP unlocked
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4per_device_eval_batch_size
: 4learning_rate
: 2e-05num_train_epochs
: 5warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine |
---|---|---|---|---|
0.2667 | 4 | 0.2285 | 0.1834 | 0.8813 |
0.5333 | 8 | 0.1028 | 0.0760 | 0.8815 |
0.8 | 12 | 0.0409 | 0.0240 | 0.8803 |
1.0667 | 16 | 0.0235 | 0.0080 | 0.8781 |
1.3333 | 20 | 0.0077 | 0.0023 | 0.8750 |
1.6 | 24 | 0.0031 | 0.0010 | 0.8721 |
1.8667 | 28 | 0.0009 | 0.0006 | 0.8697 |
2.1333 | 32 | 0.0006 | 0.0006 | 0.8678 |
2.4 | 36 | 0.0006 | 0.0006 | 0.8667 |
2.6667 | 40 | 0.0009 | 0.0006 | 0.8660 |
2.9333 | 44 | 0.0004 | 0.0006 | 0.8654 |
3.2 | 48 | 0.0007 | 0.0006 | 0.8651 |
3.4667 | 52 | 0.0006 | 0.0006 | 0.8649 |
3.7333 | 56 | 0.0005 | 0.0006 | 0.8648 |
4.0 | 60 | 0.0003 | 0.0006 | 0.8647 |
4.2667 | 64 | 0.0007 | 0.0006 | 0.8647 |
4.5333 | 68 | 0.0005 | 0.0006 | 0.8647 |
4.8 | 72 | 0.0006 | 0.0006 | 0.8647 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for yudude/all-mpnet-base-v2-incident-similarity-tuned
Base model
sentence-transformers/all-mpnet-base-v2Evaluation results
- Pearson Cosine on sts devself-reported0.850
- Spearman Cosine on sts devself-reported0.865
- Pearson Manhattan on sts devself-reported0.861
- Spearman Manhattan on sts devself-reported0.863
- Pearson Euclidean on sts devself-reported0.863
- Spearman Euclidean on sts devself-reported0.865
- Pearson Dot on sts devself-reported0.850
- Spearman Dot on sts devself-reported0.865
- Pearson Max on sts devself-reported0.863
- Spearman Max on sts devself-reported0.865