Edit model card

SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2 on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-mpnet-base-v2
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • csv

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yudude/all-mpnet-base-v2-sts")
# Run inference
sentences = [
    " - PTP Unlocked|Reported by & Contact # DU Health Check\nImpact: UE's will roam What groups are engaged: NOCoE\nFull issue description: -PTP Unlocked",
    'DU Health reported PTP unlocked',
    'DU PTP unlocked',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8503
spearman_cosine 0.8647
pearson_manhattan 0.8611
spearman_manhattan 0.8633
pearson_euclidean 0.8628
spearman_euclidean 0.8647
pearson_dot 0.8503
spearman_dot 0.8647
pearson_max 0.8628
spearman_max 0.8647

Training Details

Training Dataset

csv

  • Dataset: csv
  • Size: 60 training samples
  • Columns: description, search_key, and label
  • Approximate statistics based on the first 60 samples:
    description search_key label
    type string string float
    details
    • min: 20 tokens
    • mean: 143.83 tokens
    • max: 384 tokens
    • min: 5 tokens
    • mean: 8.75 tokens
    • max: 13 tokens
    • min: 0.9
    • mean: 0.95
    • max: 0.99
  • Samples:
    description search_key label
    UE can not camp on network (drive test) RU Healthcheck is okay Network drive test shows UE cannot attach
    Samsung Alert : UADPF: 12345 (AAA) - service-off at /0725C-NR UADPF Service off issue 0.95
    Samsung Alert : UADPF: 12345 (AAA) - - service-off at 0725C-NR Vendor UADPF service off issue 0.94
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

csv

  • Dataset: csv
  • Size: 12 evaluation samples
  • Columns: description, search_key, and label
  • Approximate statistics based on the first 12 samples:
    description search_key label
    type string string float
    details
    • min: 32 tokens
    • mean: 71.67 tokens
    • max: 109 tokens
    • min: 5 tokens
    • mean: 7.92 tokens
    • max: 11 tokens
    • min: 0.9
    • mean: 0.95
    • max: 0.99
  • Samples:
    description search_key label
    Temperature Sensor Fault ALERT with Temperature: Max cell ST1 29.4
    - PTP Unlocked Reported by & Contact # DU Health Check
    Impact: UE's will roam
    Bridge: https://meet.google.com/oab-hmxd-qsa
    What groups are engaged: NOCoE
    Full issue description: -PTP Unlocked
    Precision Time Protocol (PTP) unlocked
    - PTP Unlocked Reported by & Contact # DU Health Check
    Impact: UE's will roam
    Bridge: https://meet.google.com/oab-hmxd-qsa
    What groups are engaged: NOCoE
    Full issue description: -PTP Unlocked
    DU PTP unlocked
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sts-dev_spearman_cosine
0.2667 4 0.2285 0.1834 0.8813
0.5333 8 0.1028 0.0760 0.8815
0.8 12 0.0409 0.0240 0.8803
1.0667 16 0.0235 0.0080 0.8781
1.3333 20 0.0077 0.0023 0.8750
1.6 24 0.0031 0.0010 0.8721
1.8667 28 0.0009 0.0006 0.8697
2.1333 32 0.0006 0.0006 0.8678
2.4 36 0.0006 0.0006 0.8667
2.6667 40 0.0009 0.0006 0.8660
2.9333 44 0.0004 0.0006 0.8654
3.2 48 0.0007 0.0006 0.8651
3.4667 52 0.0006 0.0006 0.8649
3.7333 56 0.0005 0.0006 0.8648
4.0 60 0.0003 0.0006 0.8647
4.2667 64 0.0007 0.0006 0.8647
4.5333 68 0.0005 0.0006 0.8647
4.8 72 0.0006 0.0006 0.8647

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.5.0+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.1.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yudude/all-mpnet-base-v2-incident-similarity-tuned

Finetuned
(157)
this model

Evaluation results