|
import torch |
|
from PIL import Image |
|
import open_clip |
|
|
|
model, _, preprocess = open_clip.create_model_and_transforms("hf-hub:yyupenn/whyxrayclip") |
|
model.eval() |
|
tokenizer = open_clip.get_tokenizer("ViT-L-14") |
|
|
|
image = preprocess(Image.open("test_xray.jpg")).unsqueeze(0) |
|
text = tokenizer(["enlarged heart", "pleural effusion"]) |
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
image_features = model.encode_image(image) |
|
text_features = model.encode_text(text) |
|
image_features /= image_features.norm(dim=-1, keepdim=True) |
|
text_features /= text_features.norm(dim=-1, keepdim=True) |
|
|
|
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) |
|
|
|
print("Label probs:", text_probs) |