output_dir / README.md
zeenfts's picture
End of training
24f870a
|
raw
history blame
5.55 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: output_dir
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6

output_dir

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2976
  • Accuracy: 0.6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: reduce_lr_on_plateau
  • num_epochs: 77

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8 2 2.0706 0.15
No log 2.0 5 2.0309 0.2313
No log 2.8 7 1.9846 0.2562
1.9868 4.0 10 1.8915 0.4062
1.9868 4.8 12 1.8529 0.3125
1.9868 6.0 15 1.7422 0.4125
1.9868 6.8 17 1.6761 0.4313
1.6815 8.0 20 1.6310 0.4562
1.6815 8.8 22 1.5900 0.45
1.6815 10.0 25 1.5402 0.4313
1.6815 10.8 27 1.5018 0.5
1.4233 12.0 30 1.4620 0.4875
1.4233 12.8 32 1.4286 0.5062
1.4233 14.0 35 1.4045 0.5125
1.4233 14.8 37 1.3860 0.5312
1.2127 16.0 40 1.3571 0.5
1.2127 16.8 42 1.3293 0.5375
1.2127 18.0 45 1.3742 0.4813
1.2127 18.8 47 1.3151 0.5437
1.0075 20.0 50 1.3053 0.5312
1.0075 20.8 52 1.3266 0.5375
1.0075 22.0 55 1.2964 0.5312
1.0075 22.8 57 1.2278 0.5875
0.8232 24.0 60 1.2501 0.5563
0.8232 24.8 62 1.2330 0.575
0.8232 26.0 65 1.2198 0.5625
0.8232 26.8 67 1.2071 0.5875
0.6738 28.0 70 1.2643 0.5875
0.6738 28.8 72 1.2594 0.5563
0.6738 30.0 75 1.2263 0.5312
0.6738 30.8 77 1.3218 0.5188
0.5715 32.0 80 1.2593 0.5312
0.5715 32.8 82 1.2214 0.5625
0.5715 34.0 85 1.3060 0.55
0.5715 34.8 87 1.2727 0.5563
0.4523 36.0 90 1.2749 0.5375
0.4523 36.8 92 1.3570 0.5437
0.4523 38.0 95 1.2815 0.5687
0.4523 38.8 97 1.2233 0.6062
0.3971 40.0 100 1.2097 0.6
0.3971 40.8 102 1.2881 0.5813
0.3971 42.0 105 1.2400 0.575
0.3971 42.8 107 1.3140 0.5375
0.3616 44.0 110 1.1525 0.6125
0.3616 44.8 112 1.2725 0.5938
0.3616 46.0 115 1.2634 0.5813
0.3616 46.8 117 1.2299 0.6
0.338 48.0 120 1.3408 0.5375
0.338 48.8 122 1.1931 0.5938
0.338 50.0 125 1.2806 0.5938
0.338 50.8 127 1.2410 0.575
0.3445 52.0 130 1.2901 0.5813
0.3445 52.8 132 1.2504 0.6062
0.3445 54.0 135 1.1614 0.5875
0.3445 54.8 137 1.2247 0.6062
0.3299 56.0 140 1.2591 0.5625
0.3299 56.8 142 1.2629 0.5687
0.3299 58.0 145 1.2369 0.5938
0.3299 58.8 147 1.2771 0.575
0.3292 60.0 150 1.3284 0.5875
0.3292 60.8 152 1.2550 0.5625
0.3292 61.6 154 1.3047 0.55

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3